scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Claisen rearrangement over the past nine decades.

23 Apr 2004-Chemical Reviews (American Chemical Society)-Vol. 104, Iss: 6, pp 2939-3002
About: This article is published in Chemical Reviews.The article was published on 2004-04-23. It has received 753 citations till now. The article focuses on the topics: Claisen rearrangement & Ireland–Claisen rearrangement.
Citations
More filters
Journal ArticleDOI
TL;DR: This review introduces readers to the basic principles and fundamentals of flow chemistry and critically discusses recent flow chemistry accounts.
Abstract: Flow chemistry involves the use of channels or tubing to conduct a reaction in a continuous stream rather than in a flask Flow equipment provides chemists with unique control over reaction parameters enhancing reactivity or in some cases enabling new reactions This relatively young technology has received a remarkable amount of attention in the past decade with many reports on what can be done in flow Until recently, however, the question, “Should we do this in flow?” has merely been an afterthought This review introduces readers to the basic principles and fundamentals of flow chemistry and critically discusses recent flow chemistry accounts

1,192 citations

Journal ArticleDOI
TL;DR: This tutorial review focuses on the use of dynamic imine bonds in the construction of compounds and products formed with and without the aid of additional templates.
Abstract: Formation of an imine—from an amine and an aldehyde—is a reversible reaction which operates under thermodynamic control such that the formation of kinetically competitive intermediates are, in the fullness of time, replaced by the thermodynamically most stable product(s). For this fundamental reason, the imine bond has emerged as an extraordinarily diverse and useful one in the hands of synthetic chemists. Imine bond formation is one of a handful of reactions which define a discipline known as dynamic covalent chemistry (DCC), which is now employed widely in the construction of exotic molecules and extended structures on account of the inherent ‘proof-reading’ and ‘error-checking’ associated with these reversible reactions. While both supramolecular chemistry and DCC operate under the regime of reversibility, DCC has the added advantage of constructing robust molecules on account of the formation of covalent bonds rather than fragile supermolecules resulting from noncovalent bonding interactions. On the other hand, these products tend to require more time to form—sometimes days or even months—but their formation can often be catalysed. In this manner, highly symmetrical molecules and extended structures can be prepared from relatively simple precursors. When DCC is utilised in conjunction with template-directed protocols—which rely on the use of noncovalent bonding interactions between molecular building blocks in order to preorganise them into certain relative geometries as a prelude to the formation of covalent bonds under equilibrium control—an additional level of control of structure and topology arises which offers a disarmingly simple way of constructing mechanically-interlocked molecules, such as rotaxanes, catenanes, Borromean rings, and Solomon knots. This tutorial review focuses on the use of dynamic imine bonds in the construction of compounds and products formed with and without the aid of additional templates. While synthesis under thermodynamic control is giving the field of chemical topology a new lease of life, it is also providing access to an endless array of new materials that are, in many circumstances, simply not accessible using more traditional synthetic methodologies where kinetic control rules the roost. One of the most endearing qualities of chemistry is its ability to reinvent itself in order to create its own object, as Berthelot first pointed out a century and a half ago.

859 citations

Journal ArticleDOI
TL;DR: This Account discovered that in the presence of catalytic palladium-pyridinooxazoline complex, arylboronic acids add smoothly to β-substituted cyclic enones to furnish ketones with a β-benzylic quaternary stereocenter in high yields and enantioselectivities.
Abstract: ConspectusThe ever-present demand for drugs with better efficacy and fewer side effects continually motivates scientists to explore the vast chemical space. Traditionally, medicinal chemists have focused much attention on achiral or so-called “flat” molecules. More recently, attention has shifted toward molecules with stereogenic centers since their three-dimensional structures represent a much larger fraction of the chemical space and have a number of superior properties compared with flat aromatic compounds. Quaternary stereocenters, in particular, add greatly to the three-dimensionality and novelty of the molecule. Nevertheless, synthetic challenges in building quaternary stereocenters have largely prevented their implementation in drug discovery. The lack of effective and broadly general methods for enantioselective formation of quaternary stereocenters in simple molecular scaffolds has prompted us to investigate new chemistry and develop innovative tools and solutions.In this Account, we describe thr...

542 citations

Journal ArticleDOI
TL;DR: This feature article summarizes the methods for the creation of all-carbon quaternary stereogenic centers in acyclic systems and is divided into sections on substitution and additions reactions, alkylation, aldol, Mannich and rearrangements reactions.

507 citations

Journal ArticleDOI
TL;DR: In this review, an explicit outline of ligands, mechanism, scope of nucleophiles, and applications is presented, including ligand development, mechanistic understanding, substrate scope, and application in the synthesis of complex functional molecules.
Abstract: In this review, we summarize the origin and advancements of iridium-catalyzed asymmetric allylic substitution reactions during the past two decades. Since the first report in 1997, Ir-catalyzed asymmetric allylic substitution reactions have attracted intense attention due to their exceptionally high regio- and enantioselectivities. Ir-catalyzed asymmetric allylic substitution reactions have been significantly developed in recent years in many respects, including ligand development, mechanistic understanding, substrate scope, and application in the synthesis of complex functional molecules. In this review, an explicit outline of ligands, mechanism, scope of nucleophiles, and applications is presented.

434 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, commercial microwave ovens have been safely used to dramatically reduce the reaction times (at comparable yield) of Diels-Alder, Claisen, and ene reactions.

1,028 citations