scispace - formally typeset
Search or ask a question
Book ChapterDOI

Classification of Arrhythmia Using Rough Sets

01 Jan 2008-pp 326-329
TL;DR: It has been found that the classification accuracies vary between 87% and 54% respectively and it may be emphasized that rough set reasons out all the possibilities and the decision could be as close as human diagnosis.
Abstract: Arrhythmia is caused due to the changes in the normal rhythm of heart with great risk of fatality if sustained over long periods of time. Many machine-learning algorithms have been developed for a fast diagnosis of cardiac arrhythmia. Also, the decision accuracies vary from method to method with Support Vector Machines (SVM) giving the highest. However, SVM cannot deal with the uncertainties in the process of diagnosis. Therefore, the authors have considered the Rough Set method for this classification. Analysis has been done with and without reducing the number of features. It has been found that the classification accuracies vary between 87% and 54% respectively. It may be emphasized that rough set reasons out all the possibilities and the decision could be as close as human diagnosis. The experimental results are presented.
References
More filters
Journal ArticleDOI
TL;DR: Issues such as solving SVM optimization problems theoretical convergence multiclass classification probability estimates and parameter selection are discussed in detail.
Abstract: LIBSVM is a library for Support Vector Machines (SVMs). We have been actively developing this package since the year 2000. The goal is to help users to easily apply SVM to their applications. LIBSVM has gained wide popularity in machine learning and many other areas. In this article, we present all implementation details of LIBSVM. Issues such as solving SVM optimization problems theoretical convergence multiclass classification probability estimates and parameter selection are discussed in detail.

40,826 citations

Book
25 Oct 1999
TL;DR: This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining.
Abstract: Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. *Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects *Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods *Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks-in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization

20,196 citations

Journal ArticleDOI
TL;DR: This approach seems to be of fundamental importance to artificial intelligence (AI) and cognitive sciences, especially in the areas of machine learning, knowledge acquisition, decision analysis, knowledge discovery from databases, expert systems, decision support systems, inductive reasoning, and pattern recognition.
Abstract: Rough set theory, introduced by Zdzislaw Pawlak in the early 1980s [11, 12], is a new mathematical tool to deal with vagueness and uncertainty. This approach seems to be of fundamental importance to artificial intelligence (AI) and cognitive sciences, especially in the areas of machine learning, knowledge acquisition, decision analysis, knowledge discovery from databases, expert systems, decision support systems, inductive reasoning, and pattern recognition.

7,185 citations

Book ChapterDOI
10 Jul 1994
TL;DR: A method for feature subset selection using cross-validation that is applicable to any induction algorithm is described, and experiments conducted with ID3 and C4.5 on artificial and real datasets are discussed.
Abstract: We address the problem of finding a subset of features that allows a supervised induction algorithm to induce small high-accuracy concepts. We examine notions of relevance and irrelevance, and show that the definitions used in the machine learning literature do not adequately partition the features into useful categories of relevance. We present definitions for irrelevance and for two degrees of relevance. These definitions improve our understanding of the behavior of previous subset selection algorithms, and help define the subset of features that should be sought. The features selected should depend not only on the features and the target concept, but also on the induction algorithm. We describe a method for feature subset selection using cross-validation that is applicable to any induction algorithm, and discuss experiments conducted with ID3 and C4.5 on artificial and real datasets.

2,581 citations

Journal ArticleDOI
TL;DR: For the problem of finding the maximum clique in a graph, no algorithm has been found for which the ratio does not grow at least as fast as n^@e, where n is the problem size and @e>0 depends on the algorithm.

2,472 citations