scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Click Chemistry: Diverse Chemical Function from a Few Good Reactions.

01 Jun 2001-Angewandte Chemie (Angew Chem Int Ed Engl)-Vol. 40, Iss: 11, pp 2004-2021
TL;DR: In this paper, a set of powerful, highly reliable, and selective reactions for the rapid synthesis of useful new compounds and combinatorial libraries through heteroatom links (C-X-C), an approach called click chemistry is defined, enabled, and constrained by a handful of nearly perfect "springloaded" reactions.
Abstract: Examination of nature's favorite molecules reveals a striking preference for making carbon-heteroatom bonds over carbon-carbon bonds-surely no surprise given that carbon dioxide is nature's starting material and that most reactions are performed in water. Nucleic acids, proteins, and polysaccharides are condensation polymers of small subunits stitched together by carbon-heteroatom bonds. Even the 35 or so building blocks from which these crucial molecules are made each contain, at most, six contiguous C-C bonds, except for the three aromatic amino acids. Taking our cue from nature's approach, we address here the development of a set of powerful, highly reliable, and selective reactions for the rapid synthesis of useful new compounds and combinatorial libraries through heteroatom links (C-X-C), an approach we call "click chemistry". Click chemistry is at once defined, enabled, and constrained by a handful of nearly perfect "spring-loaded" reactions. The stringent criteria for a process to earn click chemistry status are described along with examples of the molecular frameworks that are easily made using this spartan, but powerful, synthetic strategy.
Citations
More filters
Journal ArticleDOI
TL;DR: In situ click chemistry is used to develop COX-2 specific inhibitors with high in vivo anti-inflammatory activity, significantly higher than that of widely used selective cyclooxygenase-2 inhibitors.
Abstract: Cyclooxygenase-2 isozyme is a promising anti-inflammatory drug target, and overexpression of this enzyme is also associated with several cancers and neurodegenerative diseases. The amino-acid sequence and structural similarity between inducible cyclooxygenase-2 and housekeeping cyclooxygenase-1 isoforms present a significant challenge to design selective cyclooxygenase-2 inhibitors. Herein, we describe the use of the cyclooxygenase-2 active site as a reaction vessel for the in situ generation of its own highly specific inhibitors. Multi-component competitive-binding studies confirmed that the cyclooxygenase-2 isozyme can judiciously select most appropriate chemical building blocks from a pool of chemicals to build its own highly potent inhibitor. Herein, with the use of kinetic target-guided synthesis, also termed as in situ click chemistry, we describe the discovery of two highly potent and selective cyclooxygenase-2 isozyme inhibitors. The in vivo anti-inflammatory activity of these two novel small molecules is significantly higher than that of widely used selective cyclooxygenase-2 inhibitors. Traditional inflammation and pain relief drugs target both cyclooxygenase 1 and 2 (COX-1 and COX-2), causing severe side effects. Here, the authors use in situ click chemistry to develop COX-2 specific inhibitors with high in vivo anti-inflammatory activity.

6,061 citations

Journal ArticleDOI
TL;DR: The radical-mediated thiol-ene reaction has all the desirable features of a click reaction, being highly efficient, simple to execute with no side products and proceeding rapidly to high yield.
Abstract: Following Sharpless' visionary characterization of several idealized reactions as click reactions, the materials science and synthetic chemistry communities have pursued numerous routes toward the identification and implementation of these click reactions. Herein, we review the radical-mediated thiol-ene reaction as one such click reaction. This reaction has all the desirable features of a click reaction, being highly efficient, simple to execute with no side products and proceeding rapidly to high yield. Further, the thiol-ene reaction is most frequently photoinitiated, particularly for photopolymerizations resulting in highly uniform polymer networks, promoting unique capabilities related to spatial and temporal control of the click reaction. The reaction mechanism and its implementation in various synthetic methodologies, biofunctionalization, surface and polymer modification, and polymerization are all reviewed.

3,229 citations

References
More filters
Journal ArticleDOI
06 Dec 1991-Science
TL;DR: Transition metal-catalyzed methods that are both selective and economical for formation of cyclic structures, of great interest for biological purposes, represent an important starting point for this long-term goal.
Abstract: Efficient synthetic methods required to assemble complex molecular arrays include reactions that are both selective (chemo-, regio-, diastereo-, and enantio-) and economical in atom count (maximum number of atoms of reactants appearing in the products). Methods that involve simply combining two or more building blocks with any other reactant needed only catalytically constitute the highest degree of atom economy. Transition metal-catalyzed methods that are both selective and economical for formation of cyclic structures, of great interest for biological purposes, represent an important starting point for this long-term goal. The limited availability of raw materials, combined with environmental concerns, require the highlighting of these goals.

3,830 citations

Book
13 Aug 1993
TL;DR: Asymmetric Hydrogenation (T. Ohkuma, et al. as discussed by the authors ), asymmetric carbon-Carbon Bond-Forming Reactions (K. Nozaki & I. Negishi). Asymmetric Addition and Insertion Reactions of Catalytically-Generated Metal Carbenes (M. O'Donnell), and asymptotic phase-transfer Reactions.
Abstract: Asymmetric Hydrogenation (T. Ohkuma, et al.). Asymmetric Hydrosilylation and Related Reactions (H. Nishiyama & K. Itoh). Asymmetric Isomerization of Allylamines (S. Akutagawa, et al.). Asymmetric Carbometallations (E. Negishi). Asymmetric Addition and Insertion Reactions of Catalytically-Generated Metal Carbenes (M. Doyle). Asymmetric Oxidations and Related Reactions (R. Johnson, et al.). Asymmetric Carbonylations (K. Nozaki & I. Ojima). Asymmetric Carbon-Carbon Bond-Forming Reactions (K. Maruoka, et al.). Asymmetric Amplification and Autocatalysis (K. Soai & T. Shibata). Asymmetric Phase-Transfer Reactions (M. O'Donnell). Asymmetric Polymerization (Y. Okamoto & T. Nakano). Epilogue. Appendix. Index.

2,758 citations

Journal ArticleDOI
TL;DR: 1i (4-[5-(4-methylphenyl)-3-(trifluoromethyl)- H-pyrazol-1-yl]benzenesulfonamide, SC-58635, celecoxib), which is currently in phase III clinical trials for the treatment of rheumatoid arthritis and osteoarthritis, is identified.
Abstract: A series of sulfonamide-containing 1,5-diarylpyrazole derivatives were prepared and evaluated for their ability to block cyclooxygenase-2 (COX-2) in vitro and in vivo. Extensive structure-activity relationship (SAR) work was carried out within this series, and a number of potent and selective inhibitors of COX-2 were identified. Since an early structural lead (1f, SC-236) exhibited an unacceptably long plasma half-life, a number of pyrazole analogs containing potential metabolic sites were evaluated further in vivo in an effort to identify compounds with acceptable pharmacokinetic profiles. This work led to the identification of 1i (4-[5-(4-methylphenyl)-3-(trifluoromethyl)- H-pyrazol-1-yl]benzenesulfonamide, SC-58635, celecoxib), which is currently in phase III clinical trials for the treatment of rheumatoid arthritis and osteoarthritis.

1,895 citations