scispace - formally typeset
Journal ArticleDOI: 10.1182/BLOOD.2020008043

Clinical insights into the origins of thrombosis in myeloproliferative neoplasms.

04 Mar 2021-Blood (American Society of Hematology)-Vol. 137, Iss: 9, pp 1145-1153
Abstract: Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), polycythemia vera, essential thrombocythemia, and primary myelofibrosis, are hematopoietic stem cell disorders that are defined by activating mutations in signal transduction pathways and are characterized clinically by the overproduction of platelets, red blood cells, and neutrophils, significant burden of disease-specific symptoms, and high rates of vascular events. The focus of this review is to critically reevaluate the clinical burden of thrombosis in MPNs, to review the clinical associations among clonal hematopoiesis, JAK2V617F burden, inflammation, and thrombosis, and to provide insights into novel primary and secondary thrombosis-prevention strategies.

... read more

Citations
  More

10 results found


Open accessJournal ArticleDOI: 10.3390/IJMS22041906
Vincenzo Nasillo1, Giovanni Riva1, Ambra Paolini2, Fabio Forghieri2  +19 moreInstitutions (2)
Abstract: The Philadelphia-negative myeloproliferative neoplasms (MPNs) are malignancies of the hematopoietic stem cell (HSC) arising as a consequence of clonal proliferation driven by somatically acquired driver mutations in discrete genes (JAK2, CALR, MPL). In recent years, along with the advances in molecular characterization, the role of immune dysregulation has been achieving increasing relevance in the pathogenesis and evolution of MPNs. In particular, a growing number of studies have shown that MPNs are often associated with detrimental cytokine milieu, expansion of the monocyte/macrophage compartment and myeloid-derived suppressor cells, as well as altered functions of T cells, dendritic cells and NK cells. Moreover, akin to solid tumors and other hematological malignancies, MPNs are able to evade T cell immune surveillance by engaging the PD-1/PD-L1 axis, whose pharmacological blockade with checkpoint inhibitors can successfully restore effective antitumor responses. A further interesting cue is provided by the recent discovery of the high immunogenic potential of JAK2V617F and CALR exon 9 mutations, that could be harnessed as intriguing targets for innovative adoptive immunotherapies. This review focuses on the recent insights in the immunological dysfunctions contributing to the pathogenesis of MPNs and outlines the potential impact of related immunotherapeutic approaches.

... read more

Topics: T cell (53%)

5 Citations


Open accessJournal ArticleDOI: 10.1016/J.CYTO.2021.155634
03 Jul 2021-Cytokine
Abstract: Thrombopoietin (TPO) is most recognized for its function as the primary regulator of megakaryocyte (MK) expansion and differentiation. MKs, in turn, are best known for their role in platelet production. Research indicates that MKs and platelets play an extensive role in the pathologic thrombosis at sites of high inflammation. TPO, therefore, is a key mediator of thromboinflammation. Silencing of TPO has been shown to decrease platelets levels and rates of pathologic thrombosis in patients with various inflammatory disorders (Barrett et al, 2020; Bunting et al, 1997; Desai et al, 2018; Kaser et al, 2001; Shirai et al, 2019). Given the high rates of thromboinflammmation in the novel coronavirus 2019 (COVID-19), as well as the well-documented aberrant MK activity in affected patients, TPO silencing offers a potential therapeutic modality in the treatment of COVID-19 and other pathologies associated with thromboinflammation. The current review explores the current clinical applications of TPO silencing and offers insight into a potential role in the treatment of COVID-19.

... read more

Topics: Thrombopoietin (53%), Thrombopoiesis (51%)

1 Citations


Journal ArticleDOI: 10.1097/MOH.0000000000000664
Brandi Reeves1, Alison R. Moliterno2Institutions (2)
Abstract: Purpose of review This review summarizes high-impact research in myeloproliferative neoplasms (MPN) from the last 18 months, with a particular focus on basic science findings. Recent findings A pseudo-hypoxia state with stabilization of hypoxia-inducible factor (HIFα exists that is central to cell growth, cell renewal, inflammation, and thrombotic potential in MPN hematopoietic cells. Summary HIFα and inflammatory pathways are new therapeutic targets in MPN, with the potential to ameliorate thrombotic risk and perhaps eradicate mutant progenitor cells.

... read more

1 Citations



Open accessJournal ArticleDOI: 10.3390/IJMS22179231
Abstract: In the bone marrow of vertebrates, two types of stem cells coexist—hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). Hematopoiesis only occurs when these two stem cell types and their descendants interact. The descendants of HSCs supply the body with all the mature blood cells, while MSCs give rise to stromal cells that form a niche for HSCs and regulate the process of hematopoiesis. The studies of hematopoiesis were initially based on morphological observations, later extended by the use of physiological methods, and were subsequently augmented by massive application of sophisticated molecular techniques. The combination of these methods produced a wealth of new data on the organization and functional features of hematopoiesis in the ontogenesis of mammals and humans. This review summarizes the current views on hematopoiesis in mice and humans, discusses the development of blood elements and hematopoiesis in the embryo, and describes how the hematopoietic system works in the adult organism and how it changes during aging.

... read more

Topics: Bone marrow (58%), Stem cell (57%), Haematopoiesis (52%) ... show more

References
  More

108 results found


Open accessJournal ArticleDOI: 10.1056/NEJMOA1707914
Paul M. Ridker1, Brendan M. Everett2, Tom Thuren3, Jean G. MacFadyen4  +24 moreInstitutions (15)
Abstract: BackgroundExperimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. MethodsWe conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. ResultsAt 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in t...

... read more

Topics: Canakinumab (68%), C-reactive protein (51%)

3,853 Citations


Open accessJournal ArticleDOI: 10.1056/NEJMOA1408617
Abstract: Background The incidence of hematologic cancers increases with age. These cancers are associated with recurrent somatic mutations in specific genes. We hypothesized that such mutations would be detectable in the blood of some persons who are not known to have hematologic disorders. Methods We analyzed whole-exome sequencing data from DNA in the peripheral-blood cells of 17,182 persons who were unselected for hematologic phenotypes. We looked for somatic mutations by identifying previously characterized single-nucleotide variants and small insertions or deletions in 160 genes that are recurrently mutated in hematologic cancers. The presence of mutations was analyzed for an association with hematologic phenotypes, survival, and cardiovascular events. Results Detectable somatic mutations were rare in persons younger than 40 years of age but rose appreciably in frequency with age. Among persons 70 to 79 years of age, 80 to 89 years of age, and 90 to 108 years of age, these clonal mutations were observed in 9.5% (219 of 2300 persons), 11.7% (37 of 317), and 18.4% (19 of 103), respectively. The majority of the variants occurred in three genes: DNMT3A, TET2, and ASXL1. The presence of a somatic mutation was associated with an increase in the risk of hematologic cancer (hazard ratio, 11.1; 95% confidence interval [CI], 3.9 to 32.6), an increase in all-cause mortality (hazard ratio, 1.4; 95% CI, 1.1 to 1.8), and increases in the risks of incident coronary heart disease (hazard ratio, 2.0; 95% CI, 1.2 to 3.4) and ischemic stroke (hazard ratio, 2.6; 95% CI, 1.4 to 4.8). Conclusions Age-related clonal hematopoiesis is a common condition that is associated with increases in the risk of hematologic cancer and in all-cause mortality, with the latter possibly due to an increased risk of cardiovascular disease. (Funded by the National Institutes of Health and others.)

... read more

Topics: Hazard ratio (55%), Germline mutation (53%)

2,339 Citations


Open accessJournal ArticleDOI: 10.1056/NEJMOA1409405
Abstract: Cancers arise from multiple acquired mutations, which presumably occur over many years. Early stages in cancer development might be present years before cancers become clinically apparent. Methods We analyzed data from whole-exome sequencing of DNA in peripheral-blood cells from 12,380 persons, unselected for cancer or hematologic phenotypes. We identified somatic mutations on the basis of unusual allelic fractions. We used data from Swedish national patient registers to follow health outcomes for 2 to 7 years after DNA sampling. Results Clonal hematopoiesis with somatic mutations was observed in 10% of persons older than 65 years of age but in only 1% of those younger than 50 years of age. Detectable clonal expansions most frequently involved somatic mutations in three genes (DNMT3A, ASXL1, and TET2) that have previously been implicated in hematologic cancers. Clonal hematopoiesis was a strong risk factor for subsequent hematologic cancer (hazard ratio, 12.9; 95% confidence interval, 5.8 to 28.7). Approximately 42% of hematologic cancers in this cohort arose in persons who had clonality at the time of DNA sampling, more than 6 months before a first diagnosis of cancer. Analysis of bone marrow–biopsy specimens obtained from two patients at the time of diagnosis of acute myeloid leukemia revealed that their cancers arose from the earlier clones. Conclusions Clonal hematopoiesis with somatic mutations is readily detected by means of DNA sequencing, is increasingly common as people age, and is associated with increased risks of hematologic cancer and death. A subset of the genes that are mutated in patients with myeloid cancers is frequently mutated in apparently healthy persons; these mutations may represent characteristic early events in the development of hematologic cancers. (Funded by the National Human Genome Research Institute and others.)

... read more

Topics: Cancer (56%), Myeloid (51%), Exome (50%) ... show more

1,895 Citations


Open accessJournal ArticleDOI: 10.1056/NEJMOA1312542
Abstract: Background Somatic mutations in the Janus kinase 2 gene (JAK2) occur in many myeloproliferative neoplasms, but the molecular pathogenesis of myeloproliferative neoplasms with nonmutated JAK2 is obscure, and the diagnosis of these neoplasms remains a challenge. Methods We performed exome sequencing of samples obtained from 151 patients with myeloproliferative neoplasms. The mutation status of the gene encoding calreticulin (CALR) was assessed in an additional 1345 hematologic cancers, 1517 other cancers, and 550 controls. We established phylogenetic trees using hematopoietic colonies. We assessed calreticulin subcellular localization using immunofluorescence and flow cytometry. Results Exome sequencing identified 1498 mutations in 151 patients, with medians of 6.5, 6.5, and 13.0 mutations per patient in samples of polycythemia vera, essential thrombocythemia, and myelofibrosis, respectively. Somatic CALR mutations were found in 70 to 84% of samples of myeloproliferative neoplasms with nonmutated JAK2, in 8...

... read more

Topics: Myeloproliferative neoplasm (66%), CALR Exon 9 Mutation (60%), Essential thrombocythemia (57%) ... show more

1,363 Citations


Open accessJournal ArticleDOI: 10.1056/NEJMOA1701719
Abstract: BackgroundClonal hematopoiesis of indeterminate potential (CHIP), which is defined as the presence of an expanded somatic blood-cell clone in persons without other hematologic abnormalities, is common among older persons and is associated with an increased risk of hematologic cancer. We previously found preliminary evidence for an association between CHIP and atherosclerotic cardiovascular disease, but the nature of this association was unclear. MethodsWe used whole-exome sequencing to detect the presence of CHIP in peripheral-blood cells and associated such presence with coronary heart disease using samples from four case–control studies that together enrolled 4726 participants with coronary heart disease and 3529 controls. To assess causality, we perturbed the function of Tet2, the second most commonly mutated gene linked to clonal hematopoiesis, in the hematopoietic cells of atherosclerosis-prone mice. ResultsIn nested case–control analyses from two prospective cohorts, carriers of CHIP had a risk of c...

... read more

Topics: Coronary artery disease (52%)

942 Citations


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
202110
Network Information