scispace - formally typeset
Open AccessPosted Content

Clinical Predictive Models for COVID-19: Systematic Study

Reads0
Chats0
TLDR
Clinical predictive models trained on routinely collected clinical data could be used to predict clinical pathways for COVID-19 and, therefore, help inform care and prioritize resources.
Abstract
Coronavirus Disease 2019 (COVID-19) is a rapidly emerging respiratory disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to the rapid human-to-human transmission of SARS-CoV-2, many healthcare systems are at risk of exceeding their healthcare capacities, in particular in terms of SARS-CoV-2 tests, hospital and intensive care unit (ICU) beds and mechanical ventilators. Predictive algorithms could potentially ease the strain on healthcare systems by identifying those who are most likely to receive a positive SARS-CoV-2 test, be hospitalised or admitted to the ICU. Here, we study clinical predictive models that estimate, using machine learning and based on routinely collected clinical data, which patients are likely to receive a positive SARS-CoV-2 test, require hospitalisation or intensive care. To evaluate the predictive performance of our models, we perform a retrospective evaluation on clinical and blood analysis data from a cohort of 5644 patients. Our experimental results indicate that our predictive models identify (i) patients that test positive for SARS-CoV-2 a priori at a sensitivity of 75% (95% CI: 67%, 81%) and a specificity of 49% (95% CI: 46%, 51%), (ii) SARS-CoV-2 positive patients that require hospitalisation with 0.92 AUC (95% CI: 0.81, 0.98), and (iii) SARS-CoV-2 positive patients that require critical care with 0.98 AUC (95% CI: 0.95, 1.00). In addition, we determine which clinical features are predictive to what degree for each of the aforementioned clinical tasks. Our results indicate that predictive models trained on routinely collected clinical data could be used to predict clinical pathways for COVID-19, and therefore help inform care and prioritise resources.

read more

Citations
More filters
Posted Content

Classification supporting COVID-19 diagnostics based on patient survey data.

TL;DR: As a part of the presented research, logistic regression and XGBoost classifiers, that allow for effective screening of patients for COVID-19, were generated and provided the basis for the DECODE service, which can serve as support in screening patients with CO VID-19 disease.
References
More filters
Proceedings Article

Adam: A Method for Stochastic Optimization

TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Proceedings Article

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Journal ArticleDOI

Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study.

TL;DR: Wang et al. as discussed by the authors used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death, including older age, high SOFA score and d-dimer greater than 1 μg/mL.
Proceedings ArticleDOI

XGBoost: A Scalable Tree Boosting System

TL;DR: XGBoost as discussed by the authors proposes a sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning to achieve state-of-the-art results on many machine learning challenges.
Proceedings Article

Rectified Linear Units Improve Restricted Boltzmann Machines

TL;DR: Restricted Boltzmann machines were developed using binary stochastic hidden units that learn features that are better for object recognition on the NORB dataset and face verification on the Labeled Faces in the Wild dataset.
Related Papers (5)