scispace - formally typeset
Search or ask a question
Journal ArticleDOI

CLIP and complementary methods

TL;DR: The prospect of integrating data obtained by CLIP with complementary methods to gain a comprehensive view of RNP assembly and remodelling, unravel the spatial and temporal dynamics of RNPs in specific cell types and subcellular compartments and understand how defects in RNPs can lead to disease are discussed.
Abstract: RNA molecules start assembling into ribonucleoprotein (RNP) complexes during transcription. Dynamic RNP assembly, largely directed by cis-acting elements on the RNA, coordinates all processes in which the RNA is involved. To identify the sites bound by a specific RNA-binding protein on endogenous RNAs, cross-linking and immunoprecipitation (CLIP) and complementary, proximity-based methods have been developed. In this Primer, we discuss the main variants of these protein-centric methods and the strategies for their optimization and quality assessment, as well as RNA-centric methods that identify the protein partners of a specific RNA. We summarize the main challenges of computational CLIP data analysis, how to handle various sources of background and how to identify functionally relevant binding regions. We outline the various applications of CLIP and available databases for data sharing. We discuss the prospect of integrating data obtained by CLIP with complementary methods to gain a comprehensive view of RNP assembly and remodelling, unravel the spatial and temporal dynamics of RNPs in specific cell types and subcellular compartments and understand how defects in RNPs can lead to disease. Finally, we present open questions in the field and give directions for further development and applications. Ule and colleagues discuss cross-linking and immunoprecipitation (CLIP) methods for characterizing the RNA binding partners of RNA-binding proteins and explore the data analysis workflows, best practices and applications for these techniques. The Primer also considers methods for characterizing the protein binding partners of specific RNAs and discusses how data from these complementary methods can be integrated into CLIP workflows.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The N6-methyladenosine (m6A) RNA methyltransferase METTL16 is an emerging player in the RNA modification landscape of the human cell and has been shown to bind and methylate the MAT2A messenger RNA (mRNA) and U6 small nuclear RNA (snRNA) as discussed by the authors.
Abstract: The N6-methyladenosine (m6A) RNA methyltransferase METTL16 is an emerging player in the RNA modification landscape of the human cell. Originally thought to be a ribosomal RNA methyltransferase, it has now been shown to bind and methylate the MAT2A messenger RNA (mRNA) and U6 small nuclear RNA (snRNA). It has also been shown to bind the MALAT1 long noncoding RNA and several other RNAs. METTL16's methyltransferase domain contains the Rossmann-like fold of class I methyltransferases and uses S-adenosylmethionine (SAM) as the methyl donor. It has an RNA methylation consensus sequence of UACAGARAA (modified A underlined), and structural requirements for its known RNA interactors. In addition to the methyltransferase domain, METTL16 protein has two other RNA binding domains, one of which resides in a vertebrate conserved region, and a putative nuclear localization signal. The role of METTL16 in the cell is still being explored, however evidence suggests it is essential for most cells. This is currently hypothesized to be due to its role in regulating the splicing of MAT2A mRNA in response to cellular SAM levels. However, one of the more pressing questions remaining is what role METTL16's methylation of U6 snRNA plays in splicing and potentially cellular survival. METTL16 also has several other putative coding and noncoding RNA interactors but the definitive methylation status of those RNAs and the role METTL16 plays in their life cycle is yet to be determined. Overall, METTL16 is an intriguing RNA binding protein and methyltransferase whose important functions in the cell are just beginning to be understood. This article is categorized under: RNA Processing > RNA Editing and Modification RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.

31 citations

Journal ArticleDOI
TL;DR: Jiang et al. as discussed by the authors reviewed the current state of the art and future challenges for harnessing big data to advance cancer research and treatment, and discussed considerations and strategies for wielding "big data" in basic research and for translational applications such as identifying biomarkers, informing clinical trials and developing new assays and treatments.
Abstract: Historically, the primary focus of cancer research has been molecular and clinical studies of a few essential pathways and genes. Recent years have seen the rapid accumulation of large-scale cancer omics data catalysed by breakthroughs in high-throughput technologies. This fast data growth has given rise to an evolving concept of ‘big data’ in cancer, whose analysis demands large computational resources and can potentially bring novel insights into essential questions. Indeed, the combination of big data, bioinformatics and artificial intelligence has led to notable advances in our basic understanding of cancer biology and to translational advancements. Further advances will require a concerted effort among data scientists, clinicians, biologists and policymakers. Here, we review the current state of the art and future challenges for harnessing big data to advance cancer research and treatment. The increasing size of cancer datasets requires new ways of thinking for analysing and integrating these data. In this Review, Jiang et al. discuss considerations and strategies for wielding ‘big data’ ― large, information-rich datasets ― in basic research and for translational applications such as identifying biomarkers, informing clinical trials and developing new assays and treatments.

30 citations

Journal ArticleDOI
TL;DR: In this paper , the authors investigated whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with cellular senescence and SASP, and they demonstrated that in severe COVID-19, alveolar type 2 (AT2) cells infected by SARS-coV2 exhibit a proinflammatory phenotype.
Abstract: Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of the respiratory system can progress to a multisystemic disease with aberrant inflammatory response. Cellular senescence promotes chronic inflammation, named senescence-associated secretory phenotype (SASP). We investigated whether coronavirus disease 2019 (COVID-19) is associated with cellular senescence and SASP. Methods Autopsy lung tissue samples from 11 COVID-19 patients and 43 age-matched non-COVID-19 controls with similar comorbidities were analysed by immunohistochemistry for SARS-CoV-2, markers of senescence and key SASP cytokines. Virally induced senescence was functionally recapitulated in vitro, by infecting epithelial Vero-E6 cells and a three-dimensional alveosphere system of alveolar type 2 (AT2) cells with SARS-CoV-2 strains isolated from COVID-19 patients. Results SARS-CoV-2 was detected by immunocytochemistry and electron microscopy predominantly in AT2 cells. Infected AT2 cells expressed angiotensin-converting enzyme 2 and exhibited increased senescence (p16INK4A and SenTraGor positivity) and interleukin (IL)-1β and IL-6 expression. In vitro, infection of Vero-E6 cells with SARS-CoV-2 induced senescence (SenTraGor), DNA damage (γ-H2AX) and increased cytokine (IL-1β, IL-6, CXCL8) and apolipoprotein B mRNA-editing (APOBEC) enzyme expression. Next-generation sequencing analysis of progenies obtained from infected/senescent Vero-E6 cells demonstrated APOBEC-mediated SARS-CoV-2 mutations. Dissemination of the SARS-CoV-2-infection and senescence was confirmed in extrapulmonary sites (kidney and liver) of a COVID-19 patient. Conclusions We demonstrate that in severe COVID-19, AT2 cells infected by SARS-CoV-2 exhibit senescence and a proinflammatory phenotype. In vitro, SARS-CoV-2 infection induces senescence and inflammation. Importantly, infected senescent cells may act as a source of SARS-CoV-2 mutagenesis mediated by APOBEC enzymes. Therefore, SARS-CoV-2-induced senescence may be an important molecular mechanism of severe COVID-19, disease persistence and mutagenesis. In severe COVID-19, alveolar type 2 (AT2) cells infected by SARS-CoV-2 exhibit senescence accompanied by a proinflammatory phenotype, a molecular mechanism that may be important in persistence of disease (post-acute sequelae of COVID-19) and mutagenesis https://bit.ly/3fnopg9

29 citations

Posted Content
TL;DR: A thorough review of the protein-RNA interaction prediction field can be found in this paper, which surveys both the binding site and binding preference prediction problems and covers the commonly used datasets, features, and models.
Abstract: Protein-RNA interactions are of vital importance to a variety of cellular activities. Both experimental and computational techniques have been developed to study the interactions. Due to the limitation of the previous database, especially the lack of protein structure data, most of the existing computational methods rely heavily on the sequence data, with only a small portion of the methods utilizing the structural information. Recently, AlphaFold has revolutionized the entire protein and biology field. Foreseeably, the protein-RNA interaction prediction will also be promoted significantly in the upcoming years. In this work, we give a thorough review of this field, surveying both the binding site and binding preference prediction problems and covering the commonly used datasets, features, and models. We also point out the potential challenges and opportunities in this field. This survey summarizes the development of the RBP-RNA interaction field in the past and foresees its future development in the post-AlphaFold era.

24 citations

Journal ArticleDOI
TL;DR: The interactions between cellular RNAs in MDA-MB-231 triple negative breast cancer cells and a panel of small molecules appended with a diazirine cross-linking moiety and an alkyne tag were probed transcriptome-wide in live cells to discover ligands that bind RNA in cells, which could be bioactive themselves or augmented with functionality such as targeted degradation.
Abstract: The interactions between cellular RNAs in MDA-MB-231 triple negative breast cancer cells and a panel of small molecules appended with a diazirine cross-linking moiety and an alkyne tag were probed transcriptome-wide in live cells. The alkyne tag allows for facile pull-down of cellular RNAs bound by each small molecule, and the enrichment of each RNA target defines the compound's molecular footprint. Among the 34 chemically diverse small molecules studied, six bound and enriched cellular RNAs. The most highly enriched interaction occurs between the novel RNA-binding compound F1 and a structured region in the 5' untranslated region of quiescin sulfhydryl oxidase 1 isoform a (QSOX1-a), not present in isoform b. Additional studies show that F1 specifically bound RNA over DNA and protein; that is, we studied the entire DNA, RNA, and protein interactome. This interaction was used to design a ribonuclease targeting chimera (RIBOTAC) to locally recruit Ribonuclease L to degrade QSOX1 mRNA in an isoform-specific manner, as QSOX1-a, but not QSOX1-b, mRNA and protein levels were reduced. The RIBOTAC alleviated QSOX1-mediated phenotypes in cancer cells. This approach can be broadly applied to discover ligands that bind RNA in cells, which could be bioactive themselves or augmented with functionality such as targeted degradation.

16 citations

References
More filters
Journal ArticleDOI
TL;DR: It is demonstrated in macrophages and B cells that collaborative interactions of the common factor PU.1 with small sets of macrophage- or B cell lineage-determining transcription factors establish cell-specific binding sites that are associated with the majority of promoter-distal H3K4me1-marked genomic regions.

9,620 citations

Journal ArticleDOI
TL;DR: In addition to maintaining the GenBank(R) nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides data analysis and retrieval resources for the data in GenBank and other biological data made available through NCBI’s website.
Abstract: In addition to maintaining the GenBank(R) nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides data analysis and retrieval resources for the data in GenBank and other biological data made available through NCBI's website. NCBI resources include Entrez, PubMed, PubMed Central, LocusLink, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Electronic PCR, OrfFinder, Spidey, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosome Aberration Project (CCAP), Entrez Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, Clusters of Orthologous Groups (COGs) database, Retroviral Genotyping Tools, SARS Coronavirus Resource, SAGEmap, Gene Expression Omnibus (GEO), Online Mendelian Inheritance in Man (OMIM), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD) and the Conserved Domain Architecture Retrieval Tool (CDART). Augmenting many of the web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of the resources can be accessed through the NCBI home page at: http://www.ncbi.nlm.nih.gov.

9,604 citations

Journal ArticleDOI
03 Aug 1990-Science
TL;DR: High-affinity nucleic acid ligands for a protein were isolated by a procedure that depends on alternate cycles of ligand selection from pools of variant sequences and amplification of the bound species.
Abstract: High-affinity nucleic acid ligands for a protein were isolated by a procedure that depends on alternate cycles of ligand selection from pools of variant sequences and amplification of the bound species. Multiple rounds exponentially enrich the population for the highest affinity species that can be clonally isolated and characterized. In particular one eight-base region of an RNA that interacts with the T4 DNA polymerase was chosen and randomized. Two different sequences were selected by this procedure from the calculated pool of 65,536 species. One is the wild-type sequence found in the bacteriophage mRNA; one is varied from wild type at four positions. The binding constants of these two RNA's to T4 DNA polymerase are equivalent. These protocols with minimal modification can yield high-affinity ligands for any protein that binds nucleic acids as part of its function; high-affinity ligands could conceivably be developed for any target molecule.

9,367 citations

Journal ArticleDOI
30 Aug 1990-Nature
TL;DR: Subpopulations of RNA molecules that bind specifically to a variety of organic dyes have been isolated from a population of random sequence RNA molecules.
Abstract: Subpopulations of RNA molecules that bind specifically to a variety of organic dyes have been isolated from a population of random sequence RNA molecules. Roughly one in 10(10) random sequence RNA molecules folds in such a way as to create a specific binding site for small ligands.

8,781 citations

Journal ArticleDOI
TL;DR: The popular MEME motif discovery algorithm is now complemented by the GLAM2 algorithm which allows discovery of motifs containing gaps, and all of the motif-based tools are now implemented as web services via Opal.
Abstract: The MEME Suite web server provides a unified portal for online discovery and analysis of sequence motifs representing features such as DNA binding sites and protein interaction domains. The popular MEME motif discovery algorithm is now complemented by the GLAM2 algorithm which allows discovery of motifs containing gaps. Three sequence scanning algorithms—MAST, FIMO and GLAM2SCAN—allow scanning numerous DNA and protein sequence databases for motifs discovered by MEME and GLAM2. Transcription factor motifs (including those discovered using MEME) can be compared with motifs in many popular motif databases using the motif database scanning algorithm Tomtom. Transcription factor motifs can be further analyzed for putative function by association with Gene Ontology (GO) terms using the motif-GO term association tool GOMO. MEME output now contains sequence LOGOS for each discovered motif, as well as buttons to allow motifs to be conveniently submitted to the sequence and motif database scanning algorithms (MAST, FIMO and Tomtom), or to GOMO, for further analysis. GLAM2 output similarly contains buttons for further analysis using GLAM2SCAN and for rerunning GLAM2 with different parameters. All of the motif-based tools are now implemented as web services via Opal. Source code, binaries and a web server are freely available for noncommercial use at http://meme.nbcr.net.

7,733 citations

Related Papers (5)