scispace - formally typeset
Search or ask a question
Journal ArticleDOI

CNS synaptogenesis promoted by glia-derived cholesterol

09 Nov 2001-Science (American Association for the Advancement of Science)-Vol. 294, Iss: 5545, pp 1354-1357
TL;DR: Cholesterol complexed to apolipoprotein E-containing lipoproteins may explain the delayed onset of CNS synaptogenesis after glia differentiation and neurobehavioral manifestations of defects in cholesterol or lipoprotein homeostasis.
Abstract: The molecular mechanisms controlling synaptogenesis in the central nervous system (CNS) are poorly understood. Previous reports showed that a glia-derived factor strongly promotes synapse development in cultures of purified CNS neurons. Here, we identify this factor as cholesterol complexed to apolipoprotein E-containing lipoproteins. CNS neurons produce enough cholesterol to survive and grow, but the formation of numerous mature synapses demands additional amounts that must be provided by glia. Thus, the availability of cholesterol appears to limit synapse development. This may explain the delayed onset of CNS synaptogenesis after glia differentiation and neurobehavioral manifestations of defects in cholesterol or lipoprotein homeostasis.
Citations
More filters
Journal ArticleDOI
TL;DR: The A β-dependent and Aβ-independent mechanisms that link Apo-E4 status with AD risk are discussed, and how to design effective strategies for AD therapy by targeting ApO-E is considered.
Abstract: Apolipoprotein E (Apo-E) is a major cholesterol carrier that supports lipid transport and injury repair in the brain. APOE polymorphic alleles are the main genetic determinants of Alzheimer disease (AD) risk: individuals carrying the e4 allele are at increased risk of AD compared with those carrying the more common e3 allele, whereas the e2 allele decreases risk. Presence of the APOE e4 allele is also associated with increased risk of cerebral amyloid angiopathy and age-related cognitive decline during normal ageing. Apo-E-lipoproteins bind to several cell-surface receptors to deliver lipids, and also to hydrophobic amyloid-β (Aβ) peptide, which is thought to initiate toxic events that lead to synaptic dysfunction and neurodegeneration in AD. Apo-E isoforms differentially regulate Aβ aggregation and clearance in the brain, and have distinct functions in regulating brain lipid transport, glucose metabolism, neuronal signalling, neuroinflammation, and mitochondrial function. In this Review, we describe current knowledge on Apo-E in the CNS, with a particular emphasis on the clinical and pathological features associated with carriers of different Apo-E isoforms. We also discuss Aβ-dependent and Aβ-independent mechanisms that link Apo-E4 status with AD risk, and consider how to design effective strategies for AD therapy by targeting Apo-E.

2,463 citations

MonographDOI
16 Dec 2004
TL;DR: The second edition of The Biomarker Guide as mentioned in this paper provides a comprehensive account of the role that biomarker technology plays both in petroleum exploration and in understanding Earth history and processes.
Abstract: The second edition of The Biomarker Guide is a fully updated and expanded version of this essential reference. Now in two volumes, it provides a comprehensive account of the role that biomarker technology plays both in petroleum exploration and in understanding Earth history and processes. Biomarkers and Isotopes in the Environment and Human History details the origins of biomarkers and introduces basic chemical principles relevant to their study. It discusses analytical techniques, and applications of biomarkers to environmental and archaeological problems. The Biomarker Guide is an invaluable resource for geologists, petroleum geochemists, biogeochemists, environmental scientists and archaeologists.

2,163 citations

Journal ArticleDOI
TL;DR: The recent recognition that astrocytes are organized in separate territories and possess active properties — notably a competence for the regulated release of 'gliotransmitters', including glutamate — has enabled us to develop an understanding of previously unknown functions for astroCytes.
Abstract: For decades, astrocytes have been considered to be non-excitable support cells of the brain. However, this view has changed radically during the past twenty years. The recent recognition that they are organized in separate territories and possess active properties — notably a competence for the regulated release of 'gliotransmitters', including glutamate — has enabled us to develop an understanding of previously unknown functions for astrocytes. Today, astrocytes are seen as local communication elements of the brain that can generate various regulatory signals and bridge structures (from neuronal to vascular) and networks that are otherwise disconnected from each other. Examples of their specific and essential roles in normal physiological processes have begun to accumulate, and the number of diseases known to involve defective astrocytes is increasing.

1,635 citations


Cites background from "CNS synaptogenesis promoted by glia..."

  • ...The importance of astrocytic ApoE is also emphasized by its role in the genesis and functionality of synapse...

    [...]

Journal ArticleDOI
11 Feb 2005-Cell
TL;DR: These studies identify TSPs as CNS synaptogenic proteins, provide evidence that astrocytes are important contributors to synaptogenesis within the developing CNS, and suggest that TSP-1 and -2 act as a permissive switch that times CNSsynaptogenesis by enabling neuronal molecules to assemble into synapses within a specific window of CNS development.

1,521 citations


Cites background or methods from "CNS synaptogenesis promoted by glia..."

  • ..., 2004), as well as with soluble astrocyte-derived signals such as cholesterol (Mauch et al., 2001) and an as yet unidentified signal reported here, that further help to promote preand postsynaptic function....

    [...]

  • ...In previous studies, we found that, when purified rat retinal ganglion cells (RGCs) are cultured in defined serum-free conditions that fully support their survival and growth, they form few synapses unless cultured with astrocytes, as measured by electrophysiology, FM1-43 imaging, immunostaining, and electron microscopy (Mauch et al., 2001; Nagler et al., 2001; Pfrieger and Barres, 1997; Ullian et al., 2004a)....

    [...]

  • ...To test whether ApoE-containing particles could be responsible for the activity as previously reported (Mauch et al., 2001), we immunodepleted ApoE-containing complexes from ACM....

    [...]

  • ...…conditions that fully support their survival and growth, they form few synapses unless cultured with astrocytes, as measured by electrophysiology, FM1-43 imaging, immunostaining, and electron microscopy (Mauch et al., 2001; Nagler et al., 2001; Pfrieger and Barres, 1997; Ullian et al., 2004a)....

    [...]

  • ...However, cholesterol does strongly enhance synaptic efficacy, as previously reported (Mauch et al., 2001; Supplemental Figure S1)....

    [...]

Journal ArticleDOI
02 May 2002-Nature
TL;DR: These findings reinforce the emerging view that astrocytes have an active regulatory role—rather than merely supportive roles traditionally assigned to them—in the mature central nervous system.
Abstract: During an investigation of the mechanisms through which the local environment controls the fate specification of adult neural stem cells, we discovered that adult astrocytes from hippocampus are capable of regulating neurogenesis by instructing the stem cells to adopt a neuronal fate. This role in fate specification was unexpected because, during development, neurons are generated before most of the astrocytes. Our findings, together with recent reports that astrocytes regulate synapse formation and synaptic transmission, reinforce the emerging view that astrocytes have an active regulatory role—rather than merely supportive roles traditionally assigned to them—in the mature central nervous system.

1,468 citations

References
More filters
Journal ArticleDOI
04 Apr 1986-Science
TL;DR: The approach was to apply the techniques of cell culture to unravel the postulated regulatory defect in FH, which led to the discovery of a cell surface receptor for a plasma cholesterol transport protein called low density lipoprotein (LDL) and to the elucidation of the mechanism by which this receptor mediates feedback control of cholesterol synthesis.
Abstract: In 1901 a physician, Archibald Garrod, observed a patient with black urine. He used this simple observation to demonstrate that a single mutant gene can produce a discrete block in a biochemical pathway, which he called an “inborn error of metabolism”. Garrod’s brilliant insight anticipated by 40 years the one gene-one enzyme concept of Beadle and Tatum. In similar fashion the chemist Linus Pauling and the biochemist Vernon Ingram, through study of patients with sickle cell anemia, showed that mutant genes alter the amino acid sequences of proteins. Clearly, many fundamental advances in biology were spawned by perceptive studies of human genetic diseases (1). We began our work in 1972 in an attempt to understand a human genetic disease, familial hypercholesterolemia or FH. In these patients the concentration of cholesterol in blood is elevated many fold above normal and heart attacks occur early in life. We postulated that this dominantly inherited disease results from a failure of end-product repression of cholesterol synthesis. The possibility fascinated us because genetic defects in feedback regulation had not been observed previously in humans or animals, and we hoped that study of this disease might throw light on fundamental regulatory mechanisms. Our approach was to apply the techniques of cell culture to unravel the postulated regulatory defect in FH. These studies led to the discovery of a cell surface receptor for a plasma cholesterol transport protein called low density lipoprotein (LDL) and to the elucidation of the mechanism by which this receptor mediates feedback control of cholesterol synthesis (2,3). FH was shown to be caused by inherited defects in the gene encoding the LDL receptor, which disrupt the normal control of cholesterol metabolism. Study of the LDL receptor in turn led to the understanding of receptor-mediated endocytosis, a genera! process by which cells communicate with each other through internalization of regulatory and nutritional molecules (4). Receptor-mediated endocytosis differs from previously described biochemical pathways because it depends upon the continuous and highly controlled movement of membraneembedded proteins from one cell organelle to another in a process termed

5,488 citations

Journal ArticleDOI
TL;DR: A new modification of silver staining is presented which utilizes two chemical properties of thiosulfate: image enhancement by pretreatment of fixed gels, and formation of soluble silver complexes which prevents unspecific background staining during image development.
Abstract: A new modification of silver staining is presented which utilizes two chemical properties of thiosulfate: image enhancement by pretreatment of fixed gels, and formation of soluble silver complexes which prevents unspecific background staining during image development. This procedure provides high sensitivity for proteins, RNA and DNA in the nanogram range on a colorless, transparent background. The performance of this method is documented by staining one-and two-dimensional patterns of plant leaf proteins. Moreover, we achieved, for the first time, the detection of the non-structural, tobacco mosaic virus-specific 126 kDa protein directly in the one-dimensional protein pattern of infected protoplasts by a staining procedure.

4,235 citations

Journal ArticleDOI
29 Apr 1988-Science
TL;DR: Apolipoprotein E is a plasma protein that serves as a ligand for low density lipoprotein receptors and, through its interaction with these receptors, participates in the transport of cholesterol and other lipids among various cells of the body.
Abstract: Apolipoprotein E is a plasma protein that serves as a ligand for low density lipoprotein receptors and, through its interaction with these receptors, participates in the transport of cholesterol and other lipids among various cells of the body A mutant form of apolipoprotein E that is defective in binding to low density lipoprotein receptors is associated with familial type III hyperlipoproteinemia, a genetic disorder characterized by elevated plasma cholesterol levels and accelerated coronary artery disease Apolipoprotein E is synthesized in various organs, including liver, brain, spleen, and kidney, and is present in high concentrations in interstitial fluid, where it appears to participate in cholesterol redistribution from cells with excess cholesterol to those requiring cholesterol Apolipo-protein E also appears to be involved in the repair response to tissue injury; for example, markedly increased amounts of apolipoprotein E are found at sites of peripheral nerve injury and regeneration Other functions of apolipoprotein E, unrelated to lipid transport, are becoming known, including immunoregulation and modulation of cell growth and differentiation

3,967 citations

Journal ArticleDOI
01 Feb 1996-Nature
TL;DR: A simple and robust technique for the sequencing of proteins isolated by polyacrylamide gel electro-phoresis, using nano-electrospray3,4 tandem mass spectrometry5,6 and multiple-sequence stretches of up to 16 amino acids are obtained.
Abstract: Molecular analysis of complex biological structures and processes increasingly requires sensitive methods for protein sequencing. Electrospray mass spectrometry has been applied to the high-sensitivity sequencing of short peptides, but technical difficulties have prevented similar success with gel-isolated proteins. Here we report a simple and robust technique for the sequencing of proteins isolated by polyacrylamide gel electrophoresis, using nano-electrospray tandem mass spectrometry. As little as 5 ng protein starting material on Coomassie- or silver-stained gels can be sequenced. Multiple-sequence stretches of up to 16 amino acids are obtained, which identify the protein unambiguously if already present in databases or provide information to clone the corresponding gene. We have applied this method to the sequencing and cloning of a protein which inhibits the proliferation of capillary endothelial cells in vitro and thus may have potential antiangiogenic effects on solid tumours.

1,695 citations

Journal ArticleDOI
26 Jan 2001-Science
TL;DR: It is shown that few synapses form in the absence of glial cells and that the fewsynapses that do form are functionally immature, and that CNS synapse number can be profoundly regulated by nonneuronal signals.
Abstract: Although astrocytes constitute nearly half of the cells in our brain, their function is a long-standing neurobiological mystery. Here we show by quantal analyses, FM1-43 imaging, immunostaining, and electron microscopy that few synapses form in the absence of glial cells and that the few synapses that do form are functionally immature. Astrocytes increase the number of mature, functional synapses on central nervous system (CNS) neurons by sevenfold and are required for synaptic maintenance in vitro. We also show that most synapses are generated concurrently with the development of glia in vivo. These data demonstrate a previously unknown function for glia in inducing and stabilizing CNS synapses, show that CNS synapse number can be profoundly regulated by nonneuronal signals, and raise the possibility that glia may actively participate in synaptic plasticity.

1,302 citations