scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Co-firing of coal and biomass fuel blends

01 Jan 2001-Progress in Energy and Combustion Science (Elsevier BV)-Vol. 27, Iss: 2, pp 171-214
TL;DR: In this article, a review of the literature on co-firing of coal with biomass fuels is presented, where the term biomass includes organic matter produced as a result of photosynthesis as well as municipal, industrial and animal waste material.
About: This article is published in Progress in Energy and Combustion Science.The article was published on 2001-01-01. It has received 790 citations till now. The article focuses on the topics: Coal combustion products & Cofiring.
Citations
More filters
Journal ArticleDOI
01 May 2010-Fuel
TL;DR: An extended overview of the chemical composition of biomass was conducted in this article, where reference peer-reviewed data for chemical composition was used to describe the biomass system, including traditional and complete proximate, ultimate and ash analyses.

1,792 citations

Journal ArticleDOI
TL;DR: In this paper, the structural, proximate and ultimate analyses of biomass and wastes differ considerably, some properties of the biomass samples such as the hydrogen content, the sulfur content and the ignition temperatures changed in a narrow interval.

1,403 citations

Journal ArticleDOI
TL;DR: In this paper, several aspects which are associated with burning biomass in boilers have been investigated such as composition of biomass, estimating the higher heating value of biomass and comparison between biomass and other fuels.
Abstract: Currently, fossil fuels such as oil, coal and natural gas represent the prime energy sources in the world. However, it is anticipated that these sources of energy will deplete within the next 40–50 years. Moreover, the expected environmental damages such as the global warming, acid rain and urban smog due to the production of emissions from these sources have tempted the world to try to reduce carbon emissions by 80% and shift towards utilizing a variety of renewable energy resources (RES) which are less environmentally harmful such as solar, wind, biomass etc. in a sustainable way. Biomass is one of the earliest sources of energy with very specific properties. In this review, several aspects which are associated with burning biomass in boilers have been investigated such as composition of biomass, estimating the higher heating value of biomass, comparison between biomass and other fuels, combustion of biomass, co-firing of biomass and coal, impacts of biomass, economic and social analysis of biomass, transportation of biomass, densification of biomass, problems of biomass and future of biomass. It has been found that utilizing biomass in boilers offers many economical, social and environmental benefits such as financial net saving, conservation of fossil fuel resources, job opportunities creation and CO 2 and NO x emissions reduction. However, care should be taken to other environmental impacts of biomass such as land and water resources, soil erosion, loss of biodiversity and deforestation. Fouling, marketing, low heating value, storage and collections and handling are all associated problems when burning biomass in boilers. The future of biomass in boilers depends upon the development of the markets for fossil fuels and on policy decisions regarding the biomass market.

1,293 citations

Journal ArticleDOI
TL;DR: In this paper, the potential applications of renewable energy sources to replace fossil fuel combustion as the prime energy sources in various countries, and discusses problems associated with biomass combustion in boiler power systems.

973 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a comprehensive review of research progress in this area, drawing on major contributions from two major research groups of the authors on torrefaction and densification at Canada and Taiwan as well as literatures.
Abstract: Torrefaction is a mild pyrolysis, which has been explored for the pretreatment of biomass to increase the heating value and hydrophobicity. Due to its potential applications for making torrefied pellets, which can be used as a high quality feedstock in gasification for high quality syngas production and as a substitute for coal in thermal power plants and metallurgical processes, torrefaction and densification have attracted great interest in recent years from both academia and bioenergy industry. This paper provides a comprehensive review of research progresses in this area, drawing on major contributions from two major research groups of the authors on torrefaction and densification at Canada and Taiwan as well as literatures. It is revealed that torrefaction of various biomass species and their major components, lignin, cellulose and hemicelluloses have been extensively studied in thermogravimetric apparatus (TGA) under both inert (N 2 ) and oxidative (O 2 , H 2 O) environments to elucidate the weight loss as a function of temperature, particle size and time. It was found that the higher heating value and saturated water uptake of torrefied biomass were a strong function of weight loss, which represents the degree of torrefaction. When torrefied sawdust is compressed into torrefied pellets, more mechanical energy is consumed and higher die temperature is required to make torrefied pellets of similar density and hardness as regular pellets. Simple economics analyses based on laboratory scale experimental data showed that because of the potential savings from pellets transport, handling and storage logistics, the overall cost for torrefied pellets can be lower than regular pellets in European market for both European and Canadian pellets. The gasification could be improved in terms of both energy efficiency and syngas quality because of the removal of oxygenated volatile compounds from torrefied biomass.

864 citations


Cites background from "Co-firing of coal and biomass fuel ..."

  • ...For those reasons, biomass is usually blended with coal for co-firing rather than used alone in power plants [3]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this article, the local turbulent viscosity is determined from the solution of transport equations for the turbulence kinetic energy and the energy dissipation rate, and the predicted hydrodynamic and heat-transfer development of the boundary layers is in close agreement with the measured behaviour.

3,999 citations

Book
01 Jan 1986
TL;DR: In this article, Rankine and Hughes-Hugoniot relations of Detonation and Deflagration Waves of Premixed Gases and Turbulent Reacting Flows with Premixed Reactants.
Abstract: Review of Chemical Thermodynamics. Review of Chemical Kinetics. Conservation Equations for Multi--Component Reacting Systems. Rankine--Hugoniot Relations of Detonation and Deflagration Waves of Premixed Gases. Premixed Laminar Flames. Diffusion Flames and Combustion of a Single Liquid Fuel Droplet. Turbulent Flames. Turbulent Reacting Flows with Premixed Reactants. Chemically Reacting Boundary--Layer Flows. Ignition. Appendix. Index.

1,990 citations

Book
01 Jan 1963

925 citations

Book
22 Aug 2013
TL;DR: In this paper, the authors discuss coal processes and properties, basic reaction processes of coal particles, including coal devolatilization, char oxidation, and volatiles combustion, and fundamental equations and background for turbulent combustion systems.
Abstract: The book is divided into five major topic areas: general characteristics of coal processes and properties; basic reaction processes of coal particles, including coal devolatilization, char oxidation, and volatiles combustion; practical fossil combustion flames; fundamental equations and background for turbulent combustion systems; the approach and theory for the interactions between chemistry and turbulence in reacting systems encompassing gaseous flames, particle-laden systems, and pollutant formation in these systems.

608 citations


"Co-firing of coal and biomass fuel ..." refers background in this paper

  • ...Heterogeneous reactions are generally governed by the following processes [48]:...

    [...]