scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Co-Producing Interdisciplinary Knowledge and Action for Sustainable Water Governance: Lessons from the Development of a Water Resources Decision Support System in Pernambuco, Brazil.

TL;DR: To explore how interdisciplinary science and sustainable water management can be co‐developed in practice, the experiences of an international collaboration are drawn on to improve local capacity to manage existing and future water resources efficiently, sustainably, and equitably in the State of Pernambuco in northeastern Brazil.
Abstract: One of the most pressing global challenges for sustainable development is freshwater management. Sustainable water governance requires interdisciplinary knowledge about environmental and social processes as well as participatory strategies that bring scientists, managers, policymakers, and other stakeholders together to cooperatively produce knowledge and solutions, promote social learning, and build enduring institutional capacity. Cooperative production of knowledge and action is designed to enhance the likelihood that the findings, models, simulations, and decision support tools developed are scientifically credible, solutions-oriented, and relevant to management needs and stakeholders' perspectives. To explore how interdisciplinary science and sustainable water management can be co-developed in practice, the experiences of an international collaboration are drawn on to improve local capacity to manage existing and future water resources efficiently, sustainably, and equitably in the State of Pernambuco in northeastern Brazil. Systems are developed to model and simulate rainfall, reservoir management, and flood forecasting that allow users to create, save, and compare future scenarios. A web-enabled decision support system is also designed to integrate models to inform water management and climate adaptation. The challenges and lessons learned from this project, the transferability of this approach, and strategies for evaluating the impacts on management decisions and sustainability outcomes are discussed.
Citations
More filters
01 Dec 2003
TL;DR: In this paper, the authors examined the use of interactive models of research in the US regional integrated scientific assessments (RISAS), using as a case study the climate assessment of the Southwest (CLIMAS).
Abstract: This paper examines the use of interactive models of research in the US regional integrated scientific assessments (RISAS), using as a case study the climate assessment of the Southwest (CLIMAS). It focuses on three components of regional climate assessments: interdisciplinarity, interaction with stakeholders and production of usable knowledge, and on the role of three explanatory variables––the level of ‘fit’ between state of knowledge production and application, disciplinary and personal flexibility, and availability of resources—which affect the co-production of science and policy in the context of integrated assessments. It finds that although no single model can fulfill the multitude of goals of such assessments, it is in highly interactive models that the possibilities of higher levels of innovation and related social impact are most likely to occur.

113 citations

Journal ArticleDOI
TL;DR: A multidisciplinary team of researchers, from engineering, natural and social sciences, have come together to detail socio-technical practices and challenges that arise in the consideration of scale throughout the socio-environmental modeling process.
Abstract: System-of-systems approaches for integrated assessments have become prevalent in recent years. Such approaches integrate a variety of models from different disciplines and modeling paradigms to represent a socio-environmental (or social-ecological) system aiming to holistically inform policy and decision-making processes. Central to the system-of-systems approaches is the representation of systems in a multi-tier framework with nested scales. Current modeling paradigms, however, have disciplinary-specific lineage, leading to inconsistencies in the conceptualization and integration of socio-environmental systems. In this paper, a multidisciplinary team of researchers, from engineering, natural and social sciences, have come together to detail socio-technical practices and challenges that arise in the consideration of scale throughout the socio-environmental modeling process. We identify key paths forward, focused on explicit consideration of scale and uncertainty, strengthening interdisciplinary communication, and improvement of the documentation process. We call for a grand vision (and commensurate funding) for holistic system-of-systems research that engages researchers, stakeholders, and policy makers in a multi-tiered process for the co-creation of knowledge and solutions to major socio-environmental problems.

42 citations


Cites background from "Co-Producing Interdisciplinary Know..."

  • ...Here, the term “interdisciplinary” is favored over trans- or multidisciplinary as the focus is on the “blending” of disciplinary knowledge (White et al., 2019)....

    [...]

  • ...Discrepancies in the treatment of scale can be addressed firstly by developing a shared understanding of the system(s) being analyzed through a holistic interdisciplinary process (Thompson, 2009; White et al., 2019)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors synthesize the literature to elucidate the intended and claimed outcomes of knowledge exchange processes at the interface of environmental science and policy, as well as the evidence used to evaluate them and methods used for collecting evaluation data.

27 citations

Journal ArticleDOI
TL;DR: This work empirically investigate the integration of the Texas Water Research Network (TWRN), which comprises academic and non-academic participants from multiple universities, disciplines and research orientations seeking to address the challenges posed by complex, multilevel water resource issues across the state of Texas.

13 citations

Journal ArticleDOI
TL;DR: The study answers a global need for a unified, clear, broadly adopted framework for transdisciplinarity and a deeper understanding of factors ensuring full-circle knowledge co-creation in waste-related contexts in the global South.

11 citations

References
More filters
01 Jan 2016
TL;DR: The Scoping meeting on collaboration between Regional Seas Programmes and Regional Fisheries Bodies in the Southwest Indian Ocean is described in this article, where the authors propose a framework for collaboration between regional sea programmes and regional fisheries bodies in the Indian Ocean.
Abstract: Information document of the Scoping meeting on collaboration between Regional Seas Programmes and Regional Fisheries Bodies in the Southwest Indian Ocean

13,752 citations

DOI
01 Jan 2008
TL;DR: The Technical Note series provides an outlet for a variety of NCAR manuscripts that contribute in specialized ways to the body of scientific knowledge but which are not suitable for journal, monograph, or book publication.
Abstract: The Technical Note series provides an outlet for a variety of NCAR manuscripts that contribute in specialized ways to the body of scientific knowledge but which are not suitable for journal, monograph, or book publication. Reports in this series are issued by the NCAR Scientific Divisions ; copies may be obtained on request from the Publications Office of NCAR. Designation symbols for the series include: Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation.

9,022 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed a geographical information system to identify Koppen's climate types based on monthly temperature and rainfall data from 2,950 weather stations in Brazil, and the results are presented as maps, graphs, diagrams and tables, allowing users to interpret the occurrence of climate types in Brazil.
Abstract: Koppen's climate classification remains the most widely used system by geographical and climatological societies across the world, with well recognized simple rules and climate symbol letters. In Brazil, climatology has been studied for more than 140 years, and among the many proposed methods Koppen 0 s system remains as the most utilized. Considering Koppen's climate classification importance for Brazil (geography, biology, ecology, meteorology, hydrology, agronomy, forestry and environmental sciences), we developed a geographical information system to identify Koppen's climate types based on monthly temperature and rainfall data from 2,950 weather stations. Temperature maps were spatially described using multivariate equations that took into account the geographical coordinates and altitude; and the map resolution (100 m) was similar to the digital elevation model derived from Shuttle Radar Topography Mission. Patterns of rainfall were interpolated using kriging, with the same resolution of temperature maps. The final climate map obtained for Brazil (851,487,700 ha) has a high spatial resolution (1 ha) which allows to observe the climatic variations at the landscape level. The results are presented as maps, graphs, diagrams and tables, allowing users to interpret the occurrence of climate types in Brazil. The zones and climate types are referenced to the most important mountains, plateaus and depressions, geographical landmarks, rivers and watersheds and major cities across the country making the information accessible to all levels of users. The climate map not only showed that the A, B and C zones represent approximately 81%, 5% and 14% of the country but also allowed the identification of Koppen's climates types never reported before in Brazil.

7,134 citations

Journal ArticleDOI
24 Jul 2009-Science
TL;DR: A general framework is used to identify 10 subsystem variables that affect the likelihood of self-organization in efforts to achieve a sustainable SES.
Abstract: A major problem worldwide is the potential loss of fisheries, forests, and water resources Understanding of the processes that lead to improvements in or deterioration of natural resources is limited, because scientific disciplines use different concepts and languages to describe and explain complex social-ecological systems (SESs) Without a common framework to organize findings, isolated knowledge does not cumulate Until recently, accepted theory has assumed that resource users will never self-organize to maintain their resources and that governments must impose solutions Research in multiple disciplines, however, has found that some government policies accelerate resource destruction, whereas some resource users have invested their time and energy to achieve sustainability A general framework is used to identify 10 subsystem variables that affect the likelihood of self-organization in efforts to achieve a sustainable SES

5,442 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a new approach to global sustainability in which they define planetary boundaries within which they expect that humanity can operate safely. But the proposed concept of "planetary boundaries" lays the groundwork for shifting our approach to governance and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development.
Abstract: Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely. Transgressing one or more planetary boundaries may be deleterious or even catastrophic due to the risk of crossing thresholds that will trigger non-linear, abrupt environmental change within continental- to planetary-scale systems. We have identified nine planetary boundaries and, drawing upon current scientific understanding, we propose quantifications for seven of them. These seven are climate change (CO2 concentration in the atmosphere <350 ppm and/or a maximum change of +1 W m-2 in radiative forcing); ocean acidification (mean surface seawater saturation state with respect to aragonite ≥ 80% of pre-industrial levels); stratospheric ozone (<5% reduction in O3 concentration from pre-industrial level of 290 Dobson Units); biogeochemical nitrogen (N) cycle (limit industrial and agricultural fixation of N2 to 35 Tg N yr-1) and phosphorus (P) cycle (annual P inflow to oceans not to exceed 10 times the natural background weathering of P); global freshwater use (<4000 km3 yr-1 of consumptive use of runoff resources); land system change (<15% of the ice-free land surface under cropland); and the rate at which biological diversity is lost (annual rate of <10 extinctions per million species). The two additional planetary boundaries for which we have not yet been able to determine a boundary level are chemical pollution and atmospheric aerosol loading. We estimate that humanity has already transgressed three planetary boundaries: for climate change, rate of biodiversity loss, and changes to the global nitrogen cycle. Planetary boundaries are interdependent, because transgressing one may both shift the position of other boundaries or cause them to be transgressed. The social impacts of transgressing boundaries will be a function of the social-ecological resilience of the affected societies. Our proposed boundaries are rough, first estimates only, surrounded by large uncertainties and knowledge gaps. Filling these gaps will require major advancements in Earth System and resilience science. The proposed concept of "planetary boundaries" lays the groundwork for shifting our approach to governance and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development. Planetary boundaries define, as it were, the boundaries of the "planetary playing field" for humanity if we want to be sure of avoiding major human-induced environmental change on a global scale.

4,771 citations