scispace - formally typeset
Search or ask a question
Journal ArticleDOI

CO-ResNet: Optimized ResNet model for COVID-19 diagnosis from X-ray images

About: This article is published in International Journal of Hybrid Intelligent Systems.The article was published on 2021-01-01. It has received 36 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: This study proposes a computer-assisted diagnostic framework based on multiple deep learning and texture-based radiomics approaches that allows it to be used by radiologists in attaining fast and accurate diagnosis of coronavirus diseases.
Abstract: The accurate and rapid detection of the novel coronavirus infection, coronavirus is very important to prevent the fast spread of such disease. Thus, reducing negative effects that influenced many industrial sectors, especially healthcare. Artificial intelligence techniques in particular deep learning could help in the fast and precise diagnosis of coronavirus from computed tomography images. Most artificial intelligence-based studies used the original computed tomography images to build their models; however, the integration of texture-based radiomics images and deep learning techniques could improve the diagnostic accuracy of the novel coronavirus diseases. This study proposes a computer-assisted diagnostic framework based on multiple deep learning and texture-based radiomics approaches. It first trains three Residual Networks (ResNets) deep learning techniques with two texture-based radiomics images including discrete wavelet transform and gray-level covariance matrix instead of the original computed tomography images. Then, it fuses the texture-based radiomics deep features sets extracted from each using discrete cosine transform. Thereafter, it further combines the fused texture-based radiomics deep features obtained from the three convolutional neural networks. Finally, three support vector machine classifiers are utilized for the classification procedure. The proposed method is validated experimentally on the benchmark severe respiratory syndrome coronavirus 2 computed tomography image dataset. The accuracies attained indicate that using texture-based radiomics (gray-level covariance matrix, discrete wavelet transform) images for training the ResNet-18 (83.22%, 74.9%), ResNet-50 (80.94%, 78.39%), and ResNet-101 (80.54%, 77.99%) is better than using the original computed tomography images (70.34%, 76.51%, and 73.42%) for ResNet-18, ResNet-50, and ResNet-101, respectively. Furthermore, the sensitivity, specificity, accuracy, precision, and F1-score achieved using the proposed computer-assisted diagnostic after the two fusion steps are 99.47%, 99.72%, 99.60%, 99.72%, and 99.60% which proves that combining texture-based radiomics deep features obtained from the three ResNets has boosted its performance. Thus, fusing multiple texture-based radiomics deep features mined from several convolutional neural networks is better than using only one type of radiomics approach and a single convolutional neural network. The performance of the proposed computer-assisted diagnostic framework allows it to be used by radiologists in attaining fast and accurate diagnosis.

23 citations

Journal ArticleDOI
28 Oct 2021-PLOS ONE
TL;DR: In this article, the authors proposed an optimized InceptionResNetV2 for COVID-19 (CO-IRv2) method, which is derived from the concepts of InceptionNet and ResNet with hyperparameter tuning, while the remaining part consisting of a global average pooling layer, batch normalization, dense layers, and dropout layers.
Abstract: This paper focuses on the application of deep learning (DL) in the diagnosis of coronavirus disease (COVID-19). The novelty of this work is in the introduction of optimized InceptionResNetV2 for COVID-19 (CO-IRv2) method. A part of the CO-IRv2 scheme is derived from the concepts of InceptionNet and ResNet with hyperparameter tuning, while the remaining part is a new architecture consisting of a global average pooling layer, batch normalization, dense layers, and dropout layers. The proposed CO-IRv2 is applied to a new dataset of 2481 computed tomography (CT) images formed by collecting two independent datasets. Data resizing and normalization are performed, and the evaluation is run up to 25 epochs. Various performance metrics, including precision, recall, accuracy, F1-score, area under the receiver operating characteristics (AUC) curve are used as performance metrics. The effectiveness of three optimizers known as Adam, Nadam and RMSProp are evaluated in classifying suspected COVID-19 patients and normal people. Results show that for CO-IRv2 and for CT images, the obtained accuracies of Adam, Nadam and RMSProp optimizers are 94.97%, 96.18% and 96.18%, respectively. Furthermore, it is shown here that for the case of CT images, CO-IRv2 with Nadam optimizer has better performance than existing DL algorithms in the diagnosis of COVID-19 patients. Finally, CO-IRv2 is applied to an X-ray dataset of 1662 images resulting in a classification accuracy of 99.40%.

21 citations

Journal ArticleDOI
TL;DR: In this paper , a new classification of authentication schemes in WMSNs based on its architecture is presented, and a comprehensive study of the existing authentication schemes is provided in terms of security and performance.
Abstract: Many applications are developed with the quick emergence of the Internet of things (IoT) and wireless sensor networks (WSNs) in the health sector. Healthcare applications that use wireless medical sensor networks (WMSNs) provide competent communication solutions for enhancing people life. WMSNs rely on highly sensitive and resource-constrained devices, so-called sensors, that sense patients' vital signs then send them through open channels via gateways to specialists. However, these transmitted data from WMSNs can be manipulated by adversaries without data security, resulting in crucial consequences. In light of this, efficient security solutions and authentication schemes are needed. Lately, researchers have focussed highly on authentication for WMSNs, and many schemes have been proposed to preserve privacy and security requirements. These schemes face a lot of security and performance issues due to the constrained devices used. This paper presents a new classification of authentication schemes in WMSNs based on its architecture; as far as we know, it is the first of its kind. It also provides a comprehensive study of the existing authentication schemes in terms of security and performance. The performance evaluation is based on experimental results. Moreover, it identifies some future research directions and recommendations for designing authentication schemes in WMSNs.

13 citations

Journal ArticleDOI
TL;DR: The proposed federated learning ensembled deep five learning blockchain model (FLED-Block) framework collects the data from the different medical healthcare centers, develops the model with the hybrid capsule learning network, and performs the prediction accurately, while preserving the privacy and shares among authorized persons.
Abstract: With the SARS-CoV-2's exponential growth, intelligent and constructive practice is required to diagnose the COVID-19. The rapid spread of the virus and the shortage of reliable testing models are considered major issues in detecting COVID-19. This problem remains the peak burden for clinicians. With the advent of artificial intelligence (AI) in image processing, the burden of diagnosing the COVID-19 cases has been reduced to acceptable thresholds. But traditional AI techniques often require centralized data storage and training for the predictive model development which increases the computational complexity. The real-world challenge is to exchange data globally across hospitals while also taking into account of the organizations' privacy concerns. Collaborative model development and privacy protection are critical considerations while training a global deep learning model. To address these challenges, this paper proposes a novel framework based on blockchain and the federated learning model. The federated learning model takes care of reduced complexity, and blockchain helps in distributed data with privacy maintained. More precisely, the proposed federated learning ensembled deep five learning blockchain model (FLED-Block) framework collects the data from the different medical healthcare centers, develops the model with the hybrid capsule learning network, and performs the prediction accurately, while preserving the privacy and shares among authorized persons. Extensive experimentation has been carried out using the lung CT images and compared the performance of the proposed model with the existing VGG-16 and 19, Alexnets, Resnets-50 and 100, Inception V3, Densenets-121, 119, and 150, Mobilenets, SegCaps in terms of accuracy (98.2%), precision (97.3%), recall (96.5%), specificity (33.5%), and F1-score (97%) in predicting the COVID-19 with effectively preserving the privacy of the data among the heterogeneous users.

11 citations

References
More filters
Journal ArticleDOI
TL;DR: The findings are consistent with person-to-person transmission of this novel coronavirus in hospital and family settings, and the reports of infected travellers in other geographical regions.

7,392 citations

Journal ArticleDOI
TL;DR: Chest CT has a high sensitivity for diagnosis of CO VID-19 and may be considered as a primary tool for the current COVID-19 detection in epidemic areas, as well as for patients with multiple RT-PCR assays.
Abstract: Chest CT had higher sensitivity for diagnosis of COVID-19 as compared with initial reverse-transcription polymerase chain reaction from swab samples in the epidemic area of China.

4,717 citations

Journal ArticleDOI
TL;DR: The Covid-19 pandemic and the public health response to it will undoubtedly contribute to widespread emotional distress and increased risk of mental health problems.
Abstract: Mental Health and the Covid-19 Pandemic Many aspects of the Covid-19 pandemic and the public health response to it will undoubtedly contribute to widespread emotional distress and increased risk fo...

2,970 citations

Journal ArticleDOI
11 Aug 2020-JAMA
TL;DR: This case series describes COVID-19 symptoms persisting a mean of 60 days after onset among Italian patients previously discharged from CO VID-19 hospitalization.
Abstract: This case series describes COVID-19 symptoms persisting a mean of 60 days after onset among Italian patients previously discharged from COVID-19 hospitalization.

2,942 citations

Journal ArticleDOI
TL;DR: In a series of 51 patients with chest CT and real-time polymerase chain reaction assay (RT-PCR) performed within 3 days, the sensitivity of CT for 2019 novel coronavirus infection was 98% and that ...
Abstract: In a series of 51 patients with chest CT and real-time polymerase chain reaction assay (RT-PCR) performed within 3 days, the sensitivity of CT for 2019 novel coronavirus infection was 98% and that ...

2,714 citations