scispace - formally typeset
Search or ask a question
Journal ArticleDOI

CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface

TL;DR: A copper electrocatalyst at an abrupt reaction interface in an alkaline electrolyte reduces CO2 to ethylene with 70% faradaic efficiency at a potential of −0.55 volts versus a reversible hydrogen electrode (RHE).
Abstract: Carbon dioxide (CO 2 ) electroreduction could provide a useful source of ethylene, but low conversion efficiency, low production rates, and low catalyst stability limit current systems. Here we report that a copper electrocatalyst at an abrupt reaction interface in an alkaline electrolyte reduces CO 2 to ethylene with 70% faradaic efficiency at a potential of −0.55 volts versus a reversible hydrogen electrode (RHE). Hydroxide ions on or near the copper surface lower the CO 2 reduction and carbon monoxide (CO)–CO coupling activation energy barriers; as a result, onset of ethylene evolution at −0.165 volts versus an RHE in 10 molar potassium hydroxide occurs almost simultaneously with CO production. Operational stability was enhanced via the introduction of a polymer-based gas diffusion layer that sandwiches the reaction interface between separate hydrophobic and conductive supports, providing constant ethylene selectivity for an initial 150 operating hours.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a tricomponent copolymer modified Cu electrode was used to achieve a high selectivity of ethylene (55%) and C2+ products (77%) compared to other modified polycrystalline Cu foil catalysts.
Abstract: Electrochemical CO2 reduction over Cu could provide value-added multicarbon hydrocarbons and alcohols. Despite recent breakthroughs, it remains a significant challenge to design a catalytic system with high product selectivity. Here we demonstrate that a high selectivity of ethylene (55%) and C2+ products (77%) could be achieved by a highly modular tricomponent copolymer modified Cu electrode, rivaling the best performance using other modified polycrystalline Cu foil catalysts. Such a copolymer can be conveniently prepared by a ring-opening metathesis polymerization, thereby offering a new degree of freedom for tuning the selectivity. Control experiments indicate all three components are essential for the selectivity enhancement. A surface characterization showed that the incorporation of a phenylpyridinium component increased the film robustness against delamination. It was also shown that its superior performance is not due to a morphology change of the Cu underneath. Molecular dynamics (MD) simulations indicate that a combination of increased local CO2 concentration, increased porosity for gas diffusion, and the local electric field effect together contribute to the increased ethylene and C2+ product selectivity.

77 citations

Journal ArticleDOI
TL;DR: In this article, the authors present an economic analysis of electrocatalytic CO2 reduction and provide an overview of representative breakthroughs in this field, and point out how theoretical guidelines enable the rational design of high-throughput catalysts and the synergistic promotion of EC reduction performance by optimizing the EC interface and the reactor.
Abstract: Electrocatalytic CO2 reduction has attracted much attention for its potential application in CO2 mitigation and fuel production. During the past two decades, the electrocatalytic reduction of CO2 has made considerable progress, and it has become a promising tool to answer environmental problems. However, most research into electrocatalytic CO2 reduction focuses on catalysts at the material level instead of evaluating the performance of the entire system for practical applications, which is insufficient to promote the sound development. This review emphasizes on how to rationally design an electrocatalytic CO2 reduction system. We initially demonstrate the necessity of electrocatalytic CO2 reduction and establish its economic analysis, and at the same time provide an overview of representative breakthroughs in this field. Then, we combine with advanced characterization technologies to deeply understand the reaction pathways of electrocatalytic CO2 reduction at the molecular level. Furthermore, we point out how theoretical guidelines enable the rational design of high-throughput catalysts and the synergistic promotion of electrocatalytic CO2 reduction performance by optimizing the electrocatalytic interface and the reactor. Finally, we customize impartial recommendations and criteria for electrocatalytic CO2 reduction to promote its healthy development. We hope to stimulate high-quality research and may see the future application of electrocatalytic CO2 reduction to solve sustainable energy and environmental problems.

77 citations

Journal ArticleDOI
TL;DR: In this article, a review aims to promote the further study of gas-phase systems for CO2 reduction, by generally examining some previous approaches from liquid phase to gas phase systems.
Abstract: Electrochemical CO2 conversion offers a promising route for value-added products such as formate, carbon monoxide, and hydrocarbons. As a result of the highly required overpotential for CO2 reduction, researchers have extensively studied the development of catalyst materials in a typical H-type cell, utilizing a dissolved CO2 reactant in the liquid phase. However, the low CO2 solubility in an aqueous solution has critically limited productivity, thereby hindering its practical application. In efforts to realize commercially available CO2 conversion, gas-phase reactor systems have recently attracted considerable attention. Although the achieved performance to date reflects a high feasibility, further development is still required in order for a well-established technology. Accordingly, this review aims to promote the further study of gas-phase systems for CO2 reduction, by generally examining some previous approaches from liquid-phase to gas-phase systems. Finally, we outline major challenges, with significant lessons for practical CO2 conversion systems.

76 citations

Journal ArticleDOI
TL;DR: In this paper, a hydrated ionomer catalyst coating strategy was developed to selectively slow O2 transport and stabilize the copper catalyst, achieving a faradaic efficiency (FE) of 68% and a non-iR-corrected full cell energetic efficiency (EE) of 26%.
Abstract: The electroreduction of carbon dioxide (CO2) to C2 products is a promising approach to divert and utilize CO2 emissions. However, the requirement of a purified CO2 feedstock decreases the economic feasibility of CO2 electrolysis. Direct utilization of industrial flue gas streams is encumbered by low CO2 concentrations and reactive oxygen (O2) impurities. We demonstrate that pressurization enables efficient CO2 electroreduction of dilute CO2 streams (15% v/v); however, with the inclusion of O2 (4% v/v), the oxygen reduction reaction (ORR) displaces CO2 reduction and consumes up to 99% of the applied current in systems based on previously-reported catalysts. We develop a hydrated ionomer catalyst coating strategy that selectively slows O2 transport and stabilizes the copper catalyst. Applying this strategy, we convert an O2-containing flue gas to C2 products at a faradaic efficiency (FE) of 68% and a non-iR-corrected full cell energetic efficiency (EE) of 26%.

76 citations

Journal ArticleDOI
TL;DR: In this paper, the authors compared the CO2RR selectivity of Cu catalysts subjected to either potentiostatic conditions (fixed applied potential of -0.7 VRHE) or pulsed electrolysis conditions (1 s pulses at oxidative potentials ranging from Ean = 0.6 to 1.5 VRHE).
Abstract: In this study, we have taken advantage of a pulsed CO2 electroreduction reaction (CO2RR) approach to tune the product distribution at industrially relevant current densities in a gas-fed flow cell. We compared the CO2RR selectivity of Cu catalysts subjected to either potentiostatic conditions (fixed applied potential of -0.7 VRHE) or pulsed electrolysis conditions (1 s pulses at oxidative potentials ranging from Ean = 0.6 to 1.5 VRHE, followed by 1 s pulses at -0.7 VRHE) and identified the main parameters responsible for the enhanced product selectivity observed in the latter case. Herein, two distinct regimes were observed: (i) for Ean = 0.9 VRHE we obtained 10% enhanced C2 product selectivity (FEC2H4 = 43.6% and FEC2H5OH = 19.8%) in comparison to the potentiostatic CO2RR at -0.7 VRHE (FEC2H4 = 40.9% and FEC2H5OH = 11%), (ii) while for Ean = 1.2 VRHE, high CH4 selectivity (FECH4 = 48.3% vs 0.1% at constant -0.7 VRHE) was observed. Operando spectroscopy (XAS, SERS) and ex situ microscopy (SEM and TEM) measurements revealed that these differences in catalyst selectivity can be ascribed to structural modifications and local pH effects. The morphological reconstruction of the catalyst observed after pulsed electrolysis with Ean = 0.9 VRHE, including the presence of highly defective interfaces and grain boundaries, was found to play a key role in the enhancement of the C2 product formation. In turn, pulsed electrolysis with Ean = 1.2 VRHE caused the consumption of OH- species near the catalyst surface, leading to an OH-poor environment favorable for CH4 production.

76 citations

References
More filters
Journal ArticleDOI
TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Abstract: Generalized gradient approximations (GGA’s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. [S0031-9007(96)01479-2] PACS numbers: 71.15.Mb, 71.45.Gm Kohn-Sham density functional theory [1,2] is widely used for self-consistent-field electronic structure calculations of the ground-state properties of atoms, molecules, and solids. In this theory, only the exchange-correlation energy EXC › EX 1 EC as a functional of the electron spin densities n"srd and n#srd must be approximated. The most popular functionals have a form appropriate for slowly varying densities: the local spin density (LSD) approximation Z d 3 rn e unif

146,533 citations

Journal ArticleDOI
TL;DR: An efficient scheme for calculating the Kohn-Sham ground state of metallic systems using pseudopotentials and a plane-wave basis set is presented and the application of Pulay's DIIS method to the iterative diagonalization of large matrices will be discussed.
Abstract: We present an efficient scheme for calculating the Kohn-Sham ground state of metallic systems using pseudopotentials and a plane-wave basis set. In the first part the application of Pulay's DIIS method (direct inversion in the iterative subspace) to the iterative diagonalization of large matrices will be discussed. Our approach is stable, reliable, and minimizes the number of order ${\mathit{N}}_{\mathrm{atoms}}^{3}$ operations. In the second part, we will discuss an efficient mixing scheme also based on Pulay's scheme. A special ``metric'' and a special ``preconditioning'' optimized for a plane-wave basis set will be introduced. Scaling of the method will be discussed in detail for non-self-consistent and self-consistent calculations. It will be shown that the number of iterations required to obtain a specific precision is almost independent of the system size. Altogether an order ${\mathit{N}}_{\mathrm{atoms}}^{2}$ scaling is found for systems containing up to 1000 electrons. If we take into account that the number of k points can be decreased linearly with the system size, the overall scaling can approach ${\mathit{N}}_{\mathrm{atoms}}$. We have implemented these algorithms within a powerful package called VASP (Vienna ab initio simulation package). The program and the techniques have been used successfully for a large number of different systems (liquid and amorphous semiconductors, liquid simple and transition metals, metallic and semiconducting surfaces, phonons in simple metals, transition metals, and semiconductors) and turned out to be very reliable. \textcopyright{} 1996 The American Physical Society.

81,985 citations

Journal ArticleDOI
TL;DR: In this paper, the formal relationship between US Vanderbilt-type pseudopotentials and Blochl's projector augmented wave (PAW) method is derived and the Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional.
Abstract: The formal relationship between ultrasoft (US) Vanderbilt-type pseudopotentials and Bl\"ochl's projector augmented wave (PAW) method is derived. It is shown that the total energy functional for US pseudopotentials can be obtained by linearization of two terms in a slightly modified PAW total energy functional. The Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional. A simple way to implement the PAW method in existing plane-wave codes supporting US pseudopotentials is pointed out. In addition, critical tests are presented to compare the accuracy and efficiency of the PAW and the US pseudopotential method with relaxed core all electron methods. These tests include small molecules $({\mathrm{H}}_{2}{,\mathrm{}\mathrm{H}}_{2}{\mathrm{O},\mathrm{}\mathrm{Li}}_{2}{,\mathrm{}\mathrm{N}}_{2}{,\mathrm{}\mathrm{F}}_{2}{,\mathrm{}\mathrm{BF}}_{3}{,\mathrm{}\mathrm{SiF}}_{4})$ and several bulk systems (diamond, Si, V, Li, Ca, ${\mathrm{CaF}}_{2},$ Fe, Co, Ni). Particular attention is paid to the bulk properties and magnetic energies of Fe, Co, and Ni.

57,691 citations

Journal ArticleDOI
TL;DR: An improved way of estimating the local tangent in the nudged elastic band method for finding minimum energy paths is presented, and examples given where a complementary method, the dimer method, is used to efficiently converge to the saddle point.
Abstract: An improved way of estimating the local tangent in the nudged elastic band method for finding minimum energy paths is presented. In systems where the force along the minimum energy path is large compared to the restoring force perpendicular to the path and when many images of the system are included in the elastic band, kinks can develop and prevent the band from converging to the minimum energy path. We show how the kinks arise and present an improved way of estimating the local tangent which solves the problem. The task of finding an accurate energy and configuration for the saddle point is also discussed and examples given where a complementary method, the dimer method, is used to efficiently converge to the saddle point. Both methods only require the first derivative of the energy and can, therefore, easily be applied in plane wave based density-functional theory calculations. Examples are given from studies of the exchange diffusion mechanism in a Si crystal, Al addimer formation on the Al(100) surfa...

6,825 citations

Journal ArticleDOI
TL;DR: This paper describes how accurate off-lattice ascent paths can be represented with respect to the grid points, and maintains the efficient linear scaling of an earlier version of the algorithm, and eliminates a tendency for the Bader surfaces to be aligned along the grid directions.
Abstract: A computational method for partitioning a charge density grid into Bader volumes is presented which is efficient, robust, and scales linearly with the number of grid points. The partitioning algorithm follows the steepest ascent paths along the charge density gradient from grid point to grid point until a charge density maximum is reached. In this paper, we describe how accurate off-lattice ascent paths can be represented with respect to the grid points. This improvement maintains the efficient linear scaling of an earlier version of the algorithm, and eliminates a tendency for the Bader surfaces to be aligned along the grid directions. As the algorithm assigns grid points to charge density maxima, subsequent paths are terminated when they reach previously assigned grid points. It is this grid-based approach which gives the algorithm its efficiency, and allows for the analysis of the large grids generated from plane-wave-based density functional theory calculations.

5,417 citations