scispace - formally typeset
Search or ask a question
Journal ArticleDOI

CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface

TL;DR: A copper electrocatalyst at an abrupt reaction interface in an alkaline electrolyte reduces CO2 to ethylene with 70% faradaic efficiency at a potential of −0.55 volts versus a reversible hydrogen electrode (RHE).
Abstract: Carbon dioxide (CO 2 ) electroreduction could provide a useful source of ethylene, but low conversion efficiency, low production rates, and low catalyst stability limit current systems. Here we report that a copper electrocatalyst at an abrupt reaction interface in an alkaline electrolyte reduces CO 2 to ethylene with 70% faradaic efficiency at a potential of −0.55 volts versus a reversible hydrogen electrode (RHE). Hydroxide ions on or near the copper surface lower the CO 2 reduction and carbon monoxide (CO)–CO coupling activation energy barriers; as a result, onset of ethylene evolution at −0.165 volts versus an RHE in 10 molar potassium hydroxide occurs almost simultaneously with CO production. Operational stability was enhanced via the introduction of a polymer-based gas diffusion layer that sandwiches the reaction interface between separate hydrophobic and conductive supports, providing constant ethylene selectivity for an initial 150 operating hours.
Citations
More filters
Journal ArticleDOI
TL;DR: A broad and historical view of different aspects and their complex interplay in CO2R catalysis on Cu is taken, with the purpose of providing new insights, critical evaluations, and guidance to the field with regard to research directions and best practices.
Abstract: To date, copper is the only heterogeneous catalyst that has shown a propensity to produce valuable hydrocarbons and alcohols, such as ethylene and ethanol, from electrochemical CO2 reduction (CO2R). There are variety of factors that impact CO2R activity and selectivity, including the catalyst surface structure, morphology, composition, the choice of electrolyte ions and pH, and the electrochemical cell design. Many of these factors are often intertwined, which can complicate catalyst discovery and design efforts. Here we take a broad and historical view of these different aspects and their complex interplay in CO2R catalysis on Cu, with the purpose of providing new insights, critical evaluations, and guidance to the field with regard to research directions and best practices. First, we describe the various experimental probes and complementary theoretical methods that have been used to discern the mechanisms by which products are formed, and next we present our current understanding of the complex reaction networks for CO2R on Cu. We then analyze two key methods that have been used in attempts to alter the activity and selectivity of Cu: nanostructuring and the formation of bimetallic electrodes. Finally, we offer some perspectives on the future outlook for electrochemical CO2R.

2,055 citations

Journal ArticleDOI
26 Apr 2019-Science
TL;DR: A comparative analysis of electrocatalyst and carbon emissions assessment of CO2 products such as ethylene, ethanol, and carbon monoxide shows that electrocatalytic production has the potential to yield the greatest reduction in carbon emissions, provided that a steady supply of clean electricity is available.
Abstract: Electrocatalytic transformation of carbon dioxide (CO2) and water into chemical feedstocks offers the potential to reduce carbon emissions by shifting the chemical industry away from fossil fuel dependence. We provide a technoeconomic and carbon emission analysis of possible products, offering targets that would need to be met for economically compelling industrial implementation to be achieved. We also provide a comparison of the projected costs and CO2 emissions across electrocatalytic, biocatalytic, and fossil fuel-derived production of chemical feedstocks. We find that for electrosynthesis to become competitive with fossil fuel-derived feedstocks, electrical-to-chemical conversion efficiencies need to reach at least 60%, and renewable electricity prices need to fall below 4 cents per kilowatt-hour. We discuss the possibility of combining electro- and biocatalytic processes, using sequential upgrading of CO2 as a representative case. We describe the technical challenges and economic barriers to marketable electrosynthesized chemicals.

1,234 citations

Journal ArticleDOI
TL;DR: In this article, the authors review recent advances and challenges in the understanding of electrochemical CO2 reduction and discuss existing models for the initial activation of CO2 on the electrocatalyst and their importance for understanding selectivity.
Abstract: The electrocatalytic reduction of carbon dioxide is a promising approach for storing (excess) renewable electricity as chemical energy in fuels. Here, we review recent advances and challenges in the understanding of electrochemical CO2 reduction. We discuss existing models for the initial activation of CO2 on the electrocatalyst and their importance for understanding selectivity. Carbon–carbon bond formation is also a key mechanistic step in CO2 electroreduction to high-density and high-value fuels. We show that both the initial CO2 activation and C–C bond formation are influenced by an intricate interplay between surface structure (both on the nano- and on the mesoscale), electrolyte effects (pH, buffer strength, ion effects) and mass transport conditions. This complex interplay is currently still far from being completely understood. In addition, we discuss recent progress in in situ spectroscopic techniques and computational techniques for mechanistic work. Finally, we identify some challenges in furthering our understanding of these themes. Electrocatalytic reduction of CO2 to fuels could be used as an approach to store renewable energy in the form of chemical energy. Here, Birdja et al. review current understanding of electrocatalytic systems and reaction pathways for these conversions.

1,141 citations

Journal ArticleDOI
04 Mar 2019
TL;DR: In this article, the authors discuss strategies to achieve high selectivity towards multicarbon products via rational catalyst and electrolyte design, focusing on findings extracted from in situ and operando characterizations.
Abstract: The CO2 electroreduction reaction (CO2RR) to fuels and feedstocks is an attractive route to close the anthropogenic carbon cycle and store renewable energy. The generation of more reduced chemicals, especially multicarbon oxygenate and hydrocarbon products (C2+) with higher energy densities, is highly desirable for industrial applications. However, selective conversion of CO2 to C2+ suffers from a high overpotential, a low reaction rate and low selectivity, and the process is extremely sensitive to the catalyst structure and electrolyte. Here we discuss strategies to achieve high C2+ selectivity through rational design of the catalyst and electrolyte. Current state-of-the-art catalysts, including Cu and Cu–bimetallic catalysts, as well as some alternative materials, are considered. The importance of taking into consideration the dynamic evolution of the catalyst structure and composition are highlighted, focusing on findings extracted from in situ and operando characterizations. Additional theoretical insight into the reaction mechanisms underlying the improved C2+ selectivity of specific catalyst geometries and compositions in synergy with a well-chosen electrolyte are also provided. The electrochemical reduction of carbon dioxide to fuels and feedstocks has received increased attention over the past few years. In this Review, Roldan Cuenya and co-workers discuss strategies to achieve high selectivity towards multicarbon products via rational catalyst and electrolyte design.

719 citations

Journal ArticleDOI
07 Feb 2020-Science
TL;DR: A catalyst:ionomer bulk heterojunction (CIBH) architecture that decouples gas, ion, and electron transport and achieves CO2 electroreduction on copper in 7 M potassium hydroxide electrolyte with an ethylene partial current density at 45% cathodic energy efficiency.
Abstract: Electrolysis offers an attractive route to upgrade greenhouse gases such as carbon dioxide (CO2) to valuable fuels and feedstocks; however, productivity is often limited by gas diffusion through a liquid electrolyte to the surface of the catalyst. Here, we present a catalyst:ionomer bulk heterojunction (CIBH) architecture that decouples gas, ion, and electron transport. The CIBH comprises a metal and a superfine ionomer layer with hydrophobic and hydrophilic functionalities that extend gas and ion transport from tens of nanometers to the micrometer scale. By applying this design strategy, we achieved CO2 electroreduction on copper in 7 M potassium hydroxide electrolyte (pH ≈ 15) with an ethylene partial current density of 1.3 amperes per square centimeter at 45% cathodic energy efficiency.

659 citations

References
More filters
Journal ArticleDOI
11 Mar 2015
TL;DR: In this article, an identical electrode covered with copper nanoparticles can yield either predominantly ethylene or methane, depending on the electrolyte concentration and applied CO2 pressure, and the conditions leading to the formation of significant amounts of methane result in rapid deterioration of hydrocarbon production rates, whereas electrode performance in conditions favoring ethylene production can be sustained for hours.
Abstract: The formation of ethylene in CO2 electroreduction over rough copper electrodes is often explained by the presence of specific surface crystal steps, edges and defects. We demonstrate that an identical electrode covered with copper nanoparticles can yield either predominantly ethylene or methane, depending on the electrolyte concentration and applied CO2 pressure. Calculations of the pH near the electrode surface suggest that ethylene formation is favored by a relatively high (local) pH. Furthermore, the conditions leading to the formation of significant amounts of methane result in rapid deterioration of hydrocarbon production rates, whereas electrode performance in conditions favoring ethylene production can be sustained for hours. This study substantially alters the mechanistic interpretation of formation of ethylene over rough copper surfaces and implies that applied process conditions inducing pH variations near the electrode surface need to be taken into consideration.

339 citations

Journal ArticleDOI
TL;DR: Investigating the electrocatalytic activity of ultrathin (diameter ∼20 nm) 5-fold twinned copper nanowires (Cu NWs) for CO2 reduction suggests that product selectivity on Cu NWs is highly dependent on morphological features and that hydrocarbon selectivity can be manipulated by structural evolution or the prevention thereof.
Abstract: Copper is uniquely active for the electrocatalytic reduction of carbon dioxide (CO2) to products beyond carbon monoxide, such as methane (CH4) and ethylene (C2H4). Therefore, understanding selectivity trends for CO2 electrocatalysis on copper surfaces is critical for developing more efficient catalysts for CO2 conversion to higher order products. Herein, we investigate the electrocatalytic activity of ultrathin (diameter ∼20 nm) 5-fold twinned copper nanowires (Cu NWs) for CO2 reduction. These Cu NW catalysts were found to exhibit high CH4 selectivity over other carbon products, reaching 55% Faradaic efficiency (FE) at -1.25 V versus reversible hydrogen electrode while other products were produced with less than 5% FE. This selectivity was found to be sensitive to morphological changes in the nanowire catalyst observed over the course of electrolysis. Wrapping the wires with graphene oxide was found to be a successful strategy for preserving both the morphology and reaction selectivity of the Cu NWs. These results suggest that product selectivity on Cu NWs is highly dependent on morphological features and that hydrocarbon selectivity can be manipulated by structural evolution or the prevention thereof.

336 citations

Journal ArticleDOI
TL;DR: The atomistic mechanisms underlying electrochemical reduction of CO are predicted, finding that at acidic pH, the C1 pathway proceeds through COH to CHOH to form CH4 while C2 (C3) pathways are kinetically blocked, thereby boosting selectivity for multi-carbon products.
Abstract: Energy and environmental concerns demand development of more efficient and selective electrodes for electrochemical reduction of CO2 to form fuels and chemicals. Since Cu is the only pure metal exhibiting reduction to form hydrocarbon chemicals, we focus here on the Cu (111) electrode. We present a methodology for density functional theory calculations to obtain accurate onset electrochemical potentials with explicit constant electrochemical potential and pH effects using implicit solvation. We predict the atomistic mechanisms underlying electrochemical reduction of CO, finding that (1) at acidic pH, the C1 pathway proceeds through COH to CHOH to form CH4 while C2 (C3) pathways are kinetically blocked; (2) at neutral pH, the C1 and C2 (C3) pathways share the COH common intermediate, where the branch to C-C coupling is realized by a novel CO-COH pathway; and (3) at high pH, early C-C coupling through adsorbed CO dimerization dominates, suppressing the C1 pathways by kinetics, thereby boosting selectivity for multi-carbon products.

328 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate that the activity and selectivity of copper during CO2 electrochemical reduction can be tuned by simply adding halides to the electrolyte, which results in an increased CO selectivity.
Abstract: In the present study we demonstrate that the activity and selectivity of copper during CO2 electrochemical reduction can be tuned by simply adding halides to the electrolyte. Comparing the production rate and Faradaic selectivity of the major products as a function the working potential in the presence of Cl–, Br–, and I–, we show that the activity and selectivity of Cu depends on the concentration and nature of the added halide. We find that the addition Cl– and Br– results in an increased CO selectivity. On the contrary, in the presence of I– the selectivity toward CO drops down and instead methane formation is enhanced up to 6 times compared with the halide-free electrolyte. Even though Br– and I– can induce morphology changes of the surface, the modification in the catalytic performance of Cu is mainly attributed to halides adsorption on the Cu surface. We hypothesizes that the adsorption of halides alters the catalytic performance of Cu by increasing the negative charge on the surface according to th...

301 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the influence of the pH on the reaction of carbon dioxide and carbon monoxide to methane and ethylene on copper electrodes and found that the pH is an important parameter in the reaction mechanism.

298 citations