scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Co9S8 nanoflakes on graphene (Co9S8/G) nanocomposites for high performance supercapacitors

09 May 2014-RSC Advances (The Royal Society of Chemistry)-Vol. 4, Iss: 40, pp 21151-21162
TL;DR: In this article, the structural, morphological and physical properties of Co9S8/graphene nanocomposites were analyzed by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), XPS, and thermogravimetric analysis (TGA).
Abstract: Co9S8/graphene nanocomposites (Co9S8/G) at various concentrations of graphene and Co9S8 were prepared by a simple chemical route from cobalt nitrate and graphene as precursors in the presence of PVP as surfactant and thioacetamide (TAA) as sulfur source. To gain knowledge about the structural, morphological and physical properties, the composite material was analyzed by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and thermogravimetric Analysis (TGA). SEM measurements showed the presence of well dispersed, ∼300 nm sized Co9S8 nanoflakes. To assess the properties of the nanocomposites for their applicability in supercapacitors, electrochemical analysis was carried out in 6 M KOH electrolyte. A maximum specific capacitance of 808 F g−1 was observed for Co9S8/G-d at 5 mV s−1 scan rate. Galvanostatic charge–discharge curves showed the excellent cyclic stability of Co9S8/G-d composite with higher charge–discharge duration than pure Co9S8. The excellent electrochemical performance of the composite could be due to the better electrical conductivity behavior of graphene on Co9S8 nanoflakes.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors performed first principles calculations to evaluate the thermodynamics of the interfaces between solid electrolyte and electrode materials and to identify the chemical and electrochemical stabilities of these interfaces.
Abstract: All-solid-state Li-ion batteries based on ceramic solid electrolyte materials are a promising next-generation energy storage technology with high energy density and enhanced cycle life. The poor interfacial conductance is one of the key limitations in enabling all-solid-state Li-ion batteries. However, the origin of this poor conductance has not been understood, and there is limited knowledge about the solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. In this study, we performed first principles calculations to evaluate the thermodynamics of the interfaces between solid electrolyte and electrode materials and to identify the chemical and electrochemical stabilities of these interfaces. Our computation results reveal that many solid electrolyte–electrode interfaces have limited chemical and electrochemical stability, and that the formation of interphase layers is thermodynamically favorable at these interfaces. These formed interphase layers with different properties significantly affect the electrochemical performance of all-solid-state Li-ion batteries. The mechanisms of applying interfacial coating layers to stabilize the interface and to reduce interfacial resistance are illustrated by our computation. This study demonstrates a computational scheme to evaluate the chemical and electrochemical stability of heterogeneous solid interfaces. The enhanced understanding of the interfacial phenomena provides the strategies of interface engineering to improve performances of all-solid-state Li-ion batteries.

641 citations

Journal ArticleDOI
TL;DR: This study demonstrates self-templated pseudomorphic transformation of MOF into surface chemistry rich hollow framework that delivers highly reactive, durable, and universal electrochemically active energy conversion and storage functionalities.
Abstract: Direct adoption of metal-organic frameworks (MOFs) as electrode materials shows impoverished electrochemical performance owing to low electrical conductivity and poor chemical stability. In this study, we demonstrate self-templated pseudomorphic transformation of MOF into surface chemistry rich hollow framework that delivers highly reactive, durable, and universal electrochemically active energy conversion and storage functionalities. In situ pseudomorphic transformation of MOF-derived hollow rhombic dodecahedron template and sulfurization of nickel cobalt layered double hydroxides (NiCo-LDHs) lead to the construction of interlayered metal sulfides (NiCo-LDH/Co9S8) system. The embedment of metal sulfide species (Co9S8) at the LDH intergalleries offers optimal interfacing of the hybrid constituent elements and materials stability. The hybrid NiCo-LDH/Co9S8 system collectively presents an ideal porous structure, rich redox chemistry, and high electrical conductivity matrix. This leads to a significant enhancement in its complementary electrocatalytic hydrogen evolution and supercapacitive energy storage properties. This work establishes the potential of MOF derived scaffold for designing of novel class hybrid inorganic–organic functional materials for electrochemical applications and beyond.

468 citations

Journal ArticleDOI
TL;DR: It is shown that cobalt pentlandite (Co9S8) nanoparticles can serve as an electrochemically active, noble-metal-free material toward hydrogen evolution reaction, and they work stably in neutral solution but not in acidic (pH 0) and basic ( pH 14) media.
Abstract: Splitting water to produce hydrogen requires the development of non-noble-metal catalysts that are able to make this reaction feasible and energy efficient. Herein, we show that cobalt pentlandite (Co9S8) nanoparticles can serve as an electrochemically active, noble-metal-free material toward hydrogen evolution reaction, and they work stably in neutral solution (pH 7) but not in acidic (pH 0) and basic (pH 14) media. We, therefore, further present a carbon-armoring strategy to increase the durability and activity of Co9S8 over a wider pH range. In particular, carbon-armored Co9S8 nanoparticles (Co9S8@C) are prepared by direct thermal treatment of a mixture of cobalt nitrate and trithiocyanuric acid at 700 °C in N2 atmosphere. Trithiocyanuric acid functions as both sulfur and carbon sources in the reaction system. The resulting Co9S8@C material operates well with high activity over a broad pH range, from pH 0 to 14, and gives nearly 100% Faradaic yield during hydrogen evolution reaction under acidic (pH 0), neutral (pH 7), and basic (pH 14) media. To the best of our knowledge, this is the first time that a transition-metal chalcogenide material is shown to have all-pH efficient and durable electrocatalytic activity. Identifying Co9S8 as the catalytically active phase and developing carbon-armoring as the improvement strategy are anticipated to give a fresh impetus to rational design of high-performance noble-metal-free water splitting catalysts.

315 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a roadmap for the development of a successful oxide and sulfide-based ASSLB focusing on interfacial challenges, while accounting for five parameters: energy density, power density, longterm stability, processing, and safety.
Abstract: DOI: 10.1002/aenm.202002689 lightweight, and compact and allow for versatile device geometries. They must also be scalable and offer high energy density to provide improved packing efficiency and longer device operation. Although both Ni–MH batteries and LIBs have been commercialized since the 1990s,[1] LIBs possess twice the gravimetric/volumetric energy density (250 Wh kg−1/700 Wh L−1 vs 170 Wh kg−1/350 Wh L−1),[2] higher battery voltage (3.7 V vs 1.2 V), and longer cycle life with lower self-discharge,[3] contributing tremendously to the proliferation of portable electronic devices (e.g., mobile phones, laptops, cameras, tablets) as well as emerging new technologies such as wearable electronic devices (e.g., smart watches and sport-related tracking devices). Their high gravimetric/ volumetric energy density,[2] excellent cycle life (thousands of cycles), and lack of the memory effect have positioned LIBs as state-of-the-art power sources and one of the greatest successes of modern electrochemistry, revolutionizing the way we acquire, process, transmit, and share information globally. Nevertheless, advances in battery energy density, safety, costs, and flexibility in shape and size are still needed to keep up with the rapidly growing demand for devices with even longer runtime as well as real-time data collection and transmission capabilities in addition to increasingly energy-demanding applications such as electric vehicles (EVs) and electricity grid storage. Even though LIBs were first commercialized in all electric vehicles (EVs) in 2010 and also emerged for grid application in the same time frame, the low energy density (≈250 Wh kg−1) and high average cost (≈$156 kWh−1 in 2019) of conventional LIBs do not meet the requirements for advanced EVs and grid-scale energy storage.[4–6] Specifically, the driving range per charge (miles), which is related to the energy density of each cell, and the cost are important parameters for EVs. For example, one 85 kWh battery pack in a Tesla Model S requires 7104 LIB cells, with an energy density of 265 Wh kg−1, providing an average range of 250 miles, which is ahead of the range of other EVs but still behind the target of 375 miles.[4] In grid-scale applications, LIBs can be used for various tasks: frequency regulation, peak shaving, load leveling, and large-scale integration of renewable energies, with specific properties generally required for each task. For frequency regulation, LIBs need to provide a fast response, high rate performance, and high-power capability, The introduction of new, safe, and reliable solid-electrolyte chemistries and technologies can potentially overcome the challenges facing their liquid counterparts while widening the breadth of possible applications. Through tech-historic evolution and rationally analyzing the transition from liquidbased Li-ion batteries (LIBs) to all-solid-state Li-metal batteries (ASSLBs), a roadmap for the development of a successful oxide and sulfide-based ASSLB focusing on interfacial challenges is introduced, while accounting for five parameters: energy density, power density, longterm stability, processing, and safety. First taking a strategic approach, this review dismantles the ASSLB into its three major components and discusses the most promising solid electrolytes and their most advantageous pairing options with oxide cathode materials and the Li metal anode. A thorough analysis of the chemical, electrochemical, and mechanical properties of the two most promising and investigated classes of inorganic solid electrolytes, namely oxides and sulfides, is presented. Next, the overriding challenges associated with the pairing of the solid electrolyte with oxide-based cathodes and a Li-metal anode, leading to limited performance for solid-state batteries are extensively addressed and possible strategies to mitigate these issues are presented. Finally, future perspectives, guidelines, and selective interface engineering strategies toward the resolution of these challenges are analyzed and discussed.

267 citations

Journal ArticleDOI
TL;DR: In this paper, a template-free methodology was proposed to fabricate high-quality uniform hollow hetero-NiCo2S4/Co9S8 (NCCS) submicro-spindles with well-dispersed heter-nanodomains at the nanoscale.
Abstract: Hierarchical hollow porous architectures with intriguing hetero-interfaces are currently of particular interest in emerging energy-related fields. In this investigation, we report a smart template-free methodology to purposefully fabricate high-quality uniform hollow hetero-NiCo2S4/Co9S8 (NCCS) submicro-spindles with well-dispersed hetero-nanodomains at the nanoscale. High-yield hollow mesocrystal nickel cobalt carbonate spindles are first solvothermally synthesized as the intermediate, and a subsequent shape-preserving conversion into hetero-NCCS submicro-spindles via a hydrothermal anion-exchange reaction occurs. The underlying template-free formation mechanism of the hollow structures is tentatively proposed. When evaluated as a promising electrode for supercapacitors, the resultant hollow mesoporous hetero-NCCS electrode with a mass loading of 5 mg cm−2 delivers a good pseudocapacitance of ∼749 F g−1 at a current rate of 4 A g−1, and holds at approximately 620 F g−1 at 15 A g−1 as a result of intrinsic synergetic contributions from structural/compositional/componental merits. Furthermore, an asymmetric device based on hollow mesoporous hetero-NCCS achieves an encouraging energy density of around 33.5 W h kg−1 at a power density of 150 W kg−1, and exceptional cycling behavior with capacitance degradation of ∼0.007% per cycle over 5000 consecutive cycles at 5 A g−1. Comprehensive investigations unambiguously highlight that the unique hollow mesoporous hetero-NCCS submicro-spindles would be a powerful electrode platform for advanced next-generation supercapacitors.

234 citations

References
More filters
Journal ArticleDOI
01 Jun 2007-Carbon
TL;DR: In this paper, a colloidal suspension of exfoliated graphene oxide sheets in water with hydrazine hydrate results in their aggregation and subsequent formation of a high surface area carbon material which consists of thin graphene-based sheets.

12,756 citations

Journal ArticleDOI
TL;DR: It is reported that chemically converted graphene sheets obtained from graphite can readily form stable aqueous colloids through electrostatic stabilization, making it possible to process graphene materials using low-cost solution processing techniques, opening up enormous opportunities to use this unique carbon nanostructure for many technological applications.
Abstract: Graphene sheets offer extraordinary electronic, thermal and mechanical properties and are expected to find a variety of applications. A prerequisite for exploiting most proposed applications for graphene is the availability of processable graphene sheets in large quantities. The direct dispersion of hydrophobic graphite or graphene sheets in water without the assistance of dispersing agents has generally been considered to be an insurmountable challenge. Here we report that chemically converted graphene sheets obtained from graphite can readily form stable aqueous colloids through electrostatic stabilization. This discovery has enabled us to develop a facile approach to large-scale production of aqueous graphene dispersions without the need for polymeric or surfactant stabilizers. Our findings make it possible to process graphene materials using low-cost solution processing techniques, opening up enormous opportunities to use this unique carbon nanostructure for many technological applications.

8,534 citations

Journal ArticleDOI
TL;DR: In this paper, a supercapacitor with a maximum specific capacitance of 205 F/g with a measured power density of 10 kW/kg at energy density of 28.5 Wh/kg in an aqueous electrolyte solution has been obtained.
Abstract: Graphene materials (GMs) as supercapacitor electrode materials have been investigated. GMs are prepared from graphene oxide sheets, and subsequently suffer a gas-based hydrazine reduction to restore the conducting carbon network. A maximum specific capacitance of 205 F/g with a measured power density of 10 kW/kg at energy density of 28.5 Wh/kg in an aqueous electrolyte solution has been obtained. Meanwhile, the supercapacitor devices exhibit excellent long cycle life along with ∼90% specific capacitance retained after 1200 cycle tests. These remarkable results demonstrate the exciting commercial potential for high performance, environmentally friendly and low-cost electrical energy storage devices based on this new 2D graphene material.

2,308 citations

Journal ArticleDOI
19 May 2011-ACS Nano
TL;DR: A facile, catalyst-free thermal annealing approach for large-scale synthesis of NG using low-cost industrial material melamine as the nitrogen source is proposed, which can completely avoid the contamination of transition metal catalysts, and thus the intrinsic catalytic performance of pure NGs can be investigated.
Abstract: The electronic and chemical properties of graphene can be modulated by chemical doping foreign atoms and functional moieties. The general approach to the synthesis of nitrogen-doped graphene (NG), such as chemical vapor deposition (CVD) performed in gas phases, requires transitional metal catalysts which could contaminate the resultant products and thus affect their properties. In this paper, we propose a facile, catalyst-free thermal annealing approach for large-scale synthesis of NG using low-cost industrial material melamine as the nitrogen source. This approach can completely avoid the contamination of transition metal catalysts, and thus the intrinsic catalytic performance of pure NGs can be investigated. Detailed X-ray photoelectron spectrum analysis of the resultant products shows that the atomic percentage of nitrogen in doped graphene samples can be adjusted up to 10.1%. Such a high doping level has not been reported previously. High-resolution N1s spectra reveal that the as-made NG mainly contai...

2,242 citations

Journal ArticleDOI
Guoxiu Wang1, Juan Yang1, Jinsoo Park1, Xinglong Gou1, Bei Wang1, Hao Liu1, Jane Yao1 
TL;DR: Graphene nanosheets were produced in large quantity via a soft chemistry synthetic route involving graphite oxidation, ultrasonic exfoliation, and chemical reduction in this paper.
Abstract: Graphene nanosheets were produced in large quantity via a soft chemistry synthetic route involving graphite oxidation, ultrasonic exfoliation, and chemical reduction. X-ray diffraction and transmission electron microscopy (TEM) observations show that graphene nanosheets were produced with sizes in the range of tens to hundreds of square nanometers and ripple-like corrugations. High resolution TEM (HRTEM) and selected area electron diffraction (SAED) analysis confirmed the ordered graphite crystal structure of graphene nanosheets. The optical properties of graphene nanosheets were characterized by Raman spectroscopy.

1,916 citations