scispace - formally typeset
Open AccessJournal ArticleDOI

Coactivator condensation at super-enhancers links phase separation and gene control

Reads0
Chats0
TLDR
It is postulated that super-enhancers are phase-separated multimolecular assemblies, also known as biomolecular condensates, which provide a means to compartmentalize and concentrate biochemical reactions within cells.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Transcription Factors Activate Genes through the Phase-Separation Capacity of Their Activation Domains.

TL;DR: It is reported that diverse ADs form phase- separated condensates with the Mediator coactivator, suggesting that diverse TFs can interact with Mediator through the phase-separating capacity of their ADs and that formation of condensate with Mediation is involved in gene activation.
Journal ArticleDOI

Mediator and RNA polymerase II clusters associate in transcription-dependent condensates

TL;DR: This work used live-cell superresolution and light-sheet imaging to study the organization and dynamics of the Mediator coactivator and RNA polymerase II (Pol II) directly and suggests that large clusters of Mediator, recruited by transcription factors at large or clustered enhancer elements, interact with large Pol II clusters in transcriptional condensates in vivo.
Journal ArticleDOI

Long-range enhancer-promoter contacts in gene expression control.

TL;DR: The latest understanding of long-range enhancer–promoter crosstalk is discussed, including target-gene specificity, interaction dynamics, protein and RNA architects of interactions, roles of 3D genome organization and the pathological consequences of regulatory rewiring.
Journal ArticleDOI

Organization of Chromatin by Intrinsic and Regulated Phase Separation

TL;DR: It is demonstrated that reconstituted chromatin undergoes histone tail-driven liquid-liquid phase separation (LLPS) in physiologic salt and when microinjected into cell nuclei, producing dense and dynamic droplets.

Control of Cell Identity Genes Occurs in Insulated Neighborhoods in Mammalian Chromosomes

TL;DR: In this article, the authors used ESC cohesin ChIA-PET data to identify the local chromosomal structures at both active and repressed genes across the genome and reveal that super-enhancer-driven genes generally occur within chromosome structures that are formed by the looping of two interacting CTCF sites co-occupied by co-hesin.
References
More filters
Journal ArticleDOI

The Sequence Alignment/Map format and SAMtools

TL;DR: SAMtools as discussed by the authors implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments.
Journal ArticleDOI

Fiji: an open-source platform for biological-image analysis

TL;DR: Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis that facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system.
Journal ArticleDOI

Ultrafast and memory-efficient alignment of short DNA sequences to the human genome

TL;DR: Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking algorithm that permits mismatches and can be used simultaneously to achieve even greater alignment speeds.
Journal ArticleDOI

BEDTools: a flexible suite of utilities for comparing genomic features

TL;DR: A new software suite for the comparison, manipulation and annotation of genomic features in Browser Extensible Data (BED) and General Feature Format (GFF) format, which allows the user to compare large datasets (e.g. next-generation sequencing data) with both public and custom genome annotation tracks.
Journal ArticleDOI

Model-based Analysis of ChIP-Seq (MACS)

TL;DR: This work presents Model-based Analysis of ChIP-Seq data, MACS, which analyzes data generated by short read sequencers such as Solexa's Genome Analyzer, and uses a dynamic Poisson distribution to effectively capture local biases in the genome, allowing for more robust predictions.
Related Papers (5)