scispace - formally typeset

Journal ArticleDOI

Coding metamaterials, digital metamaterials and programmable metamaterials

01 Oct 2014-Light-Science & Applications (Nature Publishing Group)-Vol. 3, Iss: 10

TL;DR: Digital metamaterials consisting of two kinds of unit cells whose different phase responses allow them to act as ‘0’ and ‘1’ bits are developed to enable controlled manipulation of electromagnetic waves.
Abstract: Smart materials offering great freedom in manipulating electromagnetic radiation have been developed. This exciting new concept was realized by Tie Jun Cui and co-workers at the Southeast University, China, who developed digital metamaterials consisting of two kinds of unit cells whose different phase responses allow them to act as ‘0’ and ‘1’ bits. These cells can be judiciously arranged in sequences to enable controlled manipulation of electromagnetic waves. This is one-bit coding; higher-bit coding is possible by employing more kinds of unit cells. The researchers developed a metamaterial cell whose binary response can be controlled by a biased diode. By using a field-programmable gate array, they demonstrated that this digital metamaterial can be programmed. Such metamaterials are attractive for controlling radiation beams in antennas and for realizing other ‘smart’ metamaterials.
Topics: Metamaterial (63%)
Citations
More filters

Journal ArticleDOI
Qingqing Wu1, Rui Zhang1Institutions (1)
TL;DR: Simulation results demonstrate that an IRS-aided single-cell wireless system can achieve the same rate performance as a benchmark massive MIMO system without using IRS, but with significantly reduced active antennas/RF chains.
Abstract: Intelligent reflecting surface (IRS) is a revolutionary and transformative technology for achieving spectrum and energy efficient wireless communication cost-effectively in the future. Specifically, an IRS consists of a large number of low-cost passive elements each being able to reflect the incident signal independently with an adjustable phase shift so as to collaboratively achieve three-dimensional (3D) passive beamforming without the need of any transmit radio-frequency (RF) chains. In this paper, we study an IRS-aided single-cell wireless system where one IRS is deployed to assist in the communications between a multi-antenna access point (AP) and multiple single-antenna users. We formulate and solve new problems to minimize the total transmit power at the AP by jointly optimizing the transmit beamforming by active antenna array at the AP and reflect beamforming by passive phase shifters at the IRS, subject to users’ individual signal-to-interference-plus-noise ratio (SINR) constraints. Moreover, we analyze the asymptotic performance of IRS’s passive beamforming with infinitely large number of reflecting elements and compare it to that of the traditional active beamforming/relaying. Simulation results demonstrate that an IRS-aided MIMO system can achieve the same rate performance as a benchmark massive MIMO system without using IRS, but with significantly reduced active antennas/RF chains. We also draw useful insights into optimally deploying IRS in future wireless systems.

1,344 citations


Cites background from "Coding metamaterials, digital metam..."

  • ..., metasurface) have made the reconfigurability of reflecting surfaces possible, even by controlling the phase shifters in real time [6]....

    [...]


Journal ArticleDOI
Qingqing Wu1, Rui Zhang1Institutions (1)
Abstract: IRS is a new and revolutionizing technology that is able to significantly improve the performance of wireless communication networks, by smartly reconfiguring the wireless propagation environment with the use of massive low-cost passive reflecting elements integrated on a planar surface. Specifically, different elements of an IRS can independently reflect the incident signal by controlling its amplitude and/or phase and thereby collaboratively achieve fine-grained 3D passive beamforming for directional signal enhancement or nulling. In this article, we first provide an overview of the IRS technology, including its main applications in wireless communication, competitive advantages over existing technologies, hardware architecture as well as the corresponding new signal model. We then address the key challenges in designing and implementing the new IRS-aided hybrid (with both active and passive components) wireless network, as compared to the traditional network comprising active components only. Finally, numerical results are provided to show the great performance enhancement with the use of IRS in typical wireless networks.

1,014 citations


Journal ArticleDOI
Qian Wang1, Qian Wang2, Edward T. F. Rogers1, Behrad Gholipour3  +6 moreInstitutions (3)
01 Jan 2016-Nature Photonics
Abstract: Photonic components with adjustable parameters, such as variable-focal-length lenses or spectral filters, which can change functionality upon optical stimulation, could offer numerous useful applications. Tuning of such components is conventionally achieved by either micro- or nanomechanical actuation of their constituent parts, by stretching or by heating. Here, we report a novel approach for making reconfigurable optical components that are created with light in a non-volatile and reversible fashion. Such components are written, erased and rewritten as two-dimensional binary or greyscale patterns into a nanoscale film of phase-change material by inducing a refractive-index-changing phase transition with tailored trains of femtosecond pulses. We combine germanium–antimony–tellurium-based films with a diffraction-limited resolution optical writing process to demonstrate a variety of devices: visible-range reconfigurable bichromatic and multi-focus Fresnel zone plates, a super-oscillatory lens with subwavelength focus, a greyscale hologram, and a dielectric metamaterial with on-demand reflection and transmission resonances.

722 citations


Journal ArticleDOI
Abstract: Reconfigurable intelligent surfaces (RISs) are an emerging transmission technology for application to wireless communications. RISs can be realized in different ways, which include (i) large arrays of inexpensive antennas that are usually spaced half of the wavelength apart; and (ii) metamaterial-based planar or conformal large surfaces whose scattering elements have sizes and inter-distances much smaller than the wavelength. Compared with other transmission technologies, e.g., phased arrays, multi-antenna transmitters, and relays, RISs require the largest number of scattering elements, but each of them needs to be backed by the fewest and least costly components. Also, no power amplifiers are usually needed. For these reasons, RISs constitute a promising software-defined architecture that can be realized at reduced cost, size, weight, and power (C-SWaP design), and are regarded as an enabling technology for realizing the emerging concept of smart radio environments (SREs). In this paper, we (i) introduce the emerging research field of RIS-empowered SREs; (ii) overview the most suitable applications of RISs in wireless networks; (iii) present an electromagnetic-based communication-theoretic framework for analyzing and optimizing metamaterial-based RISs; (iv) provide a comprehensive overview of the current state of research; and (v) discuss the most important research issues to tackle. Owing to the interdisciplinary essence of RIS-empowered SREs, finally, we put forth the need of reconciling and reuniting C. E. Shannon’s mathematical theory of communication with G. Green’s and J. C. Maxwell’s mathematical theories of electromagnetism for appropriately modeling, analyzing, optimizing, and deploying future wireless networks empowered by RISs.

521 citations


Posted Content
Qingqing Wu1, Rui Zhang1Institutions (1)
TL;DR: This article addresses the key challenges in designing and implementing the new IRS-aided hybrid (with both active and passive components) wireless network, as compared to the traditional network comprising active components only.
Abstract: Although the fifth-generation (5G) technologies will significantly improve the spectrum and energy efficiency of today's wireless communication networks, their high complexity and hardware cost as well as increasingly more energy consumption are still crucial issues to be solved. Furthermore, despite that such technologies are generally capable of adapting to the space and time varying wireless environment, the signal propagation over it is essentially random and largely uncontrollable. Recently, intelligent reflecting surface (IRS) has been proposed as a revolutionizing solution to address this open issue, by smartly reconfiguring the wireless propagation environment with the use of massive low-cost, passive, reflective elements integrated on a planar surface. Specifically, different elements of an IRS can independently reflect the incident signal by controlling its amplitude and/or phase and thereby collaboratively achieve fine-grained three-dimensional (3D) passive beamforming for signal enhancement or cancellation. In this article, we provide an overview of the IRS technology, including its main applications in wireless communication, competitive advantages over existing technologies, hardware architecture as well as the corresponding new signal model. We focus on the key challenges in designing and implementing the new IRS-aided hybrid (with both active and passive components) wireless network, as compared to the traditional network comprising active components only. Furthermore, numerical results are provided to show the potential for significant performance enhancement with the use of IRS in typical wireless network scenarios.

474 citations


Cites background or methods from "Coding metamaterials, digital metam..."

  • ...By controlling its biasing voltage via a direct-current (DC) feeding line, the PIN diode can be switched between “On” and “Off” states as shown in the equivalent circuits, thereby generating a phase-shift difference of π in rad [13]....

    [...]

  • ...The hardware implementation of IRS is based on the concept of “metasurface”, which is made of two-dimensional (2D) metamaterial that is digitally controllable [13]....

    [...]

  • ..., 1-bit for two-level (reflecting or absorbing) amplitude control, and/or two-level (0 or π) phase-shift control [13], [16]....

    [...]


References
More filters

Journal ArticleDOI
John B. Pendry1Institutions (1)
TL;DR: The authors' simulations show that a version of the lens operating at the frequency of visible light can be realized in the form of a thin slab of silver, which resolves objects only a few nanometers across.
Abstract: Optical lenses have for centuries been one of scientists’ prime tools. Their operation is well understood on the basis of classical optics: curved surfaces focus light by virtue of the refractive index contrast. Equally their limitations are dictated by wave optics: no lens can focus light onto an area smaller than a square wavelength. What is there new to say other than to polish the lens more perfectly and to invent slightly better dielectrics? In this Letter I want to challenge the traditional limitation on lens performance and propose a class of “superlenses,” and to suggest a practical scheme for implementing such a lens. Let us look more closely at the reasons for limitation in performance. Consider an infinitesimal dipole of frequency v in front of a lens. The electric component of the field will be given by some 2D Fourier expansion,

10,656 citations



Journal ArticleDOI
06 Apr 2001-Science
TL;DR: These experiments directly confirm the predictions of Maxwell's equations that n is given by the negative square root ofɛ·μ for the frequencies where both the permittivity and the permeability are negative.
Abstract: We present experimental scattering data at microwave frequencies on a structured metamaterial that exhibits a frequency band where the effective index of refraction (n) is negative. The material consists of a two-dimensional array of repeated unit cells of copper strips and split ring resonators on interlocking strips of standard circuit board material. By measuring the scattering angle of the transmitted beam through a prism fabricated from this material, we determine the effective n, appropriate to Snell's law. These experiments directly confirm the predictions of Maxwell's equations that n is given by the negative square root of epsilon.mu for the frequencies where both the permittivity (epsilon) and the permeability (mu) are negative. Configurations of geometrical optical designs are now possible that could not be realized by positive index materials.

7,922 citations


Journal ArticleDOI
23 Jun 2006-Science
TL;DR: This work shows how electromagnetic fields can be redirected at will and proposes a design strategy that has relevance to exotic lens design and to the cloaking of objects from electromagnetic fields.
Abstract: Using the freedom of design that metamaterials provide, we show how electromagnetic fields can be redirected at will and propose a design strategy. The conserved fields-electric displacement field D, magnetic induction field B, and Poynting vector B-are all displaced in a consistent manner. A simple illustration is given of the cloaking of a proscribed volume of space to exclude completely all electromagnetic fields. Our work has relevance to exotic lens design and to the cloaking of objects from electromagnetic fields.

7,201 citations


Journal ArticleDOI
David Schurig1, Jack J. Mock1, B.J. Justice1, Steven A. Cummer1  +3 moreInstitutions (2)
10 Nov 2006-Science
TL;DR: This work describes here the first practical realization of a cloak of invisibility, constructed with the use of artificially structured metamaterials, designed for operation over a band of microwave frequencies.
Abstract: A recently published theory has suggested that a cloak of invisibility is in principle possible, at least over a narrow frequency band. We describe here the first practical realization of such a cloak; in our demonstration, a copper cylinder was "hidden" inside a cloak constructed according to the previous theoretical prescription. The cloak was constructed with the use of artificially structured metamaterials, designed for operation over a band of microwave frequencies. The cloak decreased scattering from the hidden object while at the same time reducing its shadow, so that the cloak and object combined began to resemble empty space.

6,229 citations


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
20225
2021307
2020322
2019226
2018144
201785