scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Cognitive and emotional influences in anterior cingulate cortex

01 Jun 2000-Trends in Cognitive Sciences (Trends Cogn Sci)-Vol. 4, Iss: 6, pp 215-222
TL;DR: Various findings are reviewed in relation to the idea that ACC is a part of a circuit involved in a form of attention that serves to regulate both cognitive and emotional processing, and how the success of this regulation in controlling responses might be correlated with cingulate size.
About: This article is published in Trends in Cognitive Sciences.The article was published on 2000-06-01. It has received 5824 citations till now. The article focuses on the topics: Cingulate cortex & Error-related negativity.
Citations
More filters
Journal ArticleDOI
TL;DR: An anatomical parcellation of the spatially normalized single-subject high-resolution T1 volume provided by the Montreal Neurological Institute was performed and it is believed that this tool is an improvement for the macroscopical labeling of activated area compared to labeling assessed using the Talairach atlas brain.

13,678 citations


Cites background from "Cognitive and emotional influences ..."

  • ...…gyri from the median cingulate and medial superior frontal because recent data indicated a cognitive division of these two regions: the rostral part, 30 mm below AC–PC plane (the present definition of the anterior cingulate) being implicated in affective processing (Bush et al., 2000)....

    [...]

  • ...Similarly, we dissociated the most rostral and inferior part of the anterior cingulate and paracingulate gyri from the median cingulate and medial superior frontal because recent data indicated a cognitive division of these two regions: the rostral part, 30 mm below AC–PC plane (the present definition of the anterior cingulate) being implicated in affective processing (Bush et al., 2000)....

    [...]

Journal ArticleDOI
TL;DR: A baseline state of the normal adult human brain in terms of the brain oxygen extraction fraction or OEF is identified, suggesting the existence of an organized, baseline default mode of brain function that is suspended during specific goal-directed behaviors.
Abstract: A baseline or control state is fundamental to the understanding of most complex systems. Defining a baseline state in the human brain, arguably our most complex system, poses a particular challenge. Many suspect that left unconstrained, its activity will vary unpredictably. Despite this prediction we identify a baseline state of the normal adult human brain in terms of the brain oxygen extraction fraction or OEF. The OEF is defined as the ratio of oxygen used by the brain to oxygen delivered by flowing blood and is remarkably uniform in the awake but resting state (e.g., lying quietly with eyes closed). Local deviations in the OEF represent the physiological basis of signals of changes in neuronal activity obtained with functional MRI during a wide variety of human behaviors. We used quantitative metabolic and circulatory measurements from positron-emission tomography to obtain the OEF regionally throughout the brain. Areas of activation were conspicuous by their absence. All significant deviations from the mean hemisphere OEF were increases, signifying deactivations, and resided almost exclusively in the visual system. Defining the baseline state of an area in this manner attaches meaning to a group of areas that consistently exhibit decreases from this baseline, during a wide variety of goal-directed behaviors monitored with positron-emission tomography and functional MRI. These decreases suggest the existence of an organized, baseline default mode of brain function that is suspended during specific goal-directed behaviors.

10,708 citations

Journal ArticleDOI
TL;DR: It is argued and present evidence that great apes understand the basics of intentional action, but they still do not participate in activities involving joint intentions and attention (shared intentionality), and children's skills of shared intentionality develop gradually during the first 14 months of life.
Abstract: We propose that the crucial difference between human cognition and that of other species is the ability to participate with others in collaborative activities with shared goals and intentions: shared intentionality. Participation in such activities requires not only especially powerful forms of intention reading and cultural learning, but also a unique motivation to share psychological states with oth- ers and unique forms of cognitive representation for doing so. The result of participating in these activities is species-unique forms of cultural cognition and evolution, enabling everything from the creation and use of linguistic symbols to the construction of social norms and individual beliefs to the establishment of social institutions. In support of this proposal we argue and present evidence that great apes (and some children with autism) understand the basics of intentional action, but they still do not participate in activities involving joint intentions and attention (shared intentionality). Human children's skills of shared intentionality develop gradually during the first 14 months of life as two ontogenetic pathways intertwine: (1) the general ape line of understanding others as animate, goal-directed, and intentional agents; and (2) a species-unique motivation to share emotions, experience, and activities with other persons. The develop- mental outcome is children's ability to construct dialogic cognitive representations, which enable them to participate in earnest in the collectivity that is human cognition.

3,660 citations

Journal ArticleDOI
TL;DR: This work reviews the emerging literature that relates social cognition to the medial frontal cortex and proposes a theoretical model of medial frontal cortical function relevant to different aspects of social cognitive processing.
Abstract: Social interaction is a cornerstone of human life, yet the neural mechanisms underlying social cognition are poorly understood. Recently, research that integrates approaches from neuroscience and social psychology has begun to shed light on these processes, and converging evidence from neuroimaging studies suggests a unique role for the medial frontal cortex. We review the emerging literature that relates social cognition to the medial frontal cortex and, on the basis of anatomical and functional characteristics of this brain region, propose a theoretical model of medial frontal cortical function relevant to different aspects of social cognitive processing.

3,426 citations


Cites background or result from "Cognitive and emotional influences ..."

  • ...Similar activations were found when participants decided whether behaviours were appropriate for people versus dogs (10,48,32)62, formed impressions about people as opposed to objects (–9,54,36)63, observed social interactions (2,52,26)64, and viewed personally familiar faces (–4,53,19)65....

    [...]

  • ...observed more activity in the arMFC (10,52,2) of participants when they were thinking about attributes of the self versus George W....

    [...]

Journal ArticleDOI
TL;DR: A critical comparison of findings across individual studies is provided and suggests that separate brain regions are involved in different aspects of emotion.

3,349 citations


Cites background from "Cognitive and emotional influences ..."

  • ...The ACC is known to be involved in a form of attention that serves to regulate both cognitive and emotional processing (Whalen et al., 1998a; Bush et al., 2000), and is closely interconnected to the MPFC (Petrides and Pandya, 1999; Devinsky et al....

    [...]

  • ...Given the putative importance of cognition in emotion, we questioned whether the MPFC can be subdivided into affective and cognitive regions, which has been observed in the anterior cingulate cortex (ACC) (Bush et al., 2000)....

    [...]

  • ...The ACC is known to be involved in a form of attention that serves to regulate both cognitive and emotional processing (Whalen et al., 1998a; Bush et al., 2000), and is closely interconnected to the MPFC (Petrides and Pandya, 1999; Devinsky et al., 1995)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: Illustration de trois fonctions principales qui sont predominantes dans l'etude de l'intervention de l'sattention dans les processus cognitifs: 1) orientation vers des evenements sensoriels; 2) detection des signaux par processus focal; 3) maintenir la vigilance en etat d'alerte
Abstract: : The concept of attention as central to human performance extends back to the start of experimental psychology, yet even a few years ago, it would not have been possible to outline in even a preliminary form a functional anatomy of the human attentional system. New developments in neuroscience have opened the study of higher cognition to physiological analysis, and have revealed a system of anatomical areas that appear to be basic to the selection of information for focal (conscious) processing. The importance of attention is its unique role in connecting the mental level of description of processes used in cognitive science with the anatomical level common in neuroscience. Sperry describes the central role that mental concepts play in understanding brain function. As is the case for sensory and motor systems of the brain, our knowledge of the anatomy of attention is incomplete. Nevertheless, we can now begin to identify some principles of organization that allow attention to function as a unified system for the control of mental processing. Although many of our points are still speculative and controversial, we believe they constitute a basis for more detailed studies of attention from a cognitive-neuroscience viewpoint. Perhaps even more important for furthering future studies, multiple methods of mental chronometry, brain lesions, electrophysiology, and several types of neuro-imaging have converged on common findings.

7,237 citations

Book ChapterDOI
01 Jan 1986
TL;DR: This chapter proposes a theoretical framework structured around the notion of a set of active schemas, organized according to the particular action sequences of which they are a part, awaiting the appropriate set of conditions so that they can become selected to control action.
Abstract: Much effort has been made to understand the role of attention in perception; much less effort has been placed on the role attention plays in the control of action Our goal in this chapter is to account for the role of attention in action, both when performance is automatic and when it is under deliberate conscious control We propose a theoretical framework structured around the notion of a set of active schemas, organized according to the particular action sequences of which they are a part, awaiting the appropriate set of conditions so that they can become selected to control action The analysis is therefore centered around actions, primarily external actions, but the same principles apply to internal actions—actions that involve only the cognitive processing mechanisms One major emphasis in the study of attentional processes is the distinction between controlled and automatic processing of perceptual inputs (eg, Shiffrin & Schneider, 1977) Our work here can be seen as complementary to the distinction between controlled and automatic processes: we examine action rather than perception; we emphasize the situations in which deliberate, conscious control of activity is desired rather than those that are automatic

4,060 citations

Journal ArticleDOI
01 Feb 1995-Brain
TL;DR: The cingulate epilepsy syndrome provides important support of experimental animal and human functional imaging studies for the role of anterior cingulates cortex in movement, affect and social behaviours.
Abstract: Assessments of anterior cingulate cortex in experimental animals and humans have led to unifying theories of its structural organization and contributions to mammalian behaviour. The anterior cingulate cortex forms a large region around the rostrum of the corpus callosum that is termed the anterior executive region. This region has numerous projections into motor systems, however, since these projections originate from different parts of anterior cingulate cortex and because functional studies have shown that it does not have a uniform contribution to brain functions, the anterior executive region is further subdivided into ‘affect’ and ‘cognition’ components. The affect division includes areas 25, 33 and rostral area 24, and has extensive connections with the amygdala and periaqueductal grey, and parts of it project to autonomic brainstem motor nuclei. In addition to regulating autonomic and endocrine functions, it is involved in conditioned emotional learning, vocalizations associated with expressing internal states, assessments of motivational content and assigning emotional valence to internal and external stimuli, and maternal—infant interactions. The cognition division includes caudal areas 24' and 32', the cingulate motor areas in the cingulate sulcus and nociceptive cortex. The cingulate motor areas project to the spinal cord and red nucleus and have premotor functions, while the nociceptive area is engaged in both response selection and cognitively demanding information processing. The cingulate epilepsy syndrome provides important support of experimental animal and human functional imaging studies for the role of anterior cingulate cortex in movement, affect and social behaviours. Excessive cingulate activity in cases with seizures confirmed in anterior cingulate cortex with subdural electrode recordings, can impair consciousness, alter affective state and expression, and influence skeletomotor and autonomic activity. Interictally, patients with anterior cingulate cortex epilepsy often display psychopathic or sociopathic behaviours. In other clinical examples of elevated anterior cingulate cortex activity it may contribute to tics, obsessive—compulsive behaviours, and aberrent social behaviour. Conversely, reduced cingulate activity following infarcts or surgery can contribute to behavioural disorders including akinetic mutism, diminished self-awareness and depression, motor neglect and impaired motor initiation, reduced responses to pain, and aberrent social behaviour. The role of anterior cingulate cortex in pain responsiveness is suggested by cingulumotomy results and functional imaging studies during noxious somatic stimulation. The affect division of anterior cingulate cortex modulates autonomic activity and internal emotional responses, while the cognition division is engaged in response selection associated with skeletomotor activity and responses to noxious stimuli. Overall, anterior cingulate cortex appears to play a crucial role in initiation, motivation, and goal-directed behaviours. The anterior cingulate cortex is part of a larger matrix of structures that are engaged in similar functions. These structures form the rostral limbic system and include the amygdala, periaqueductal grey, ventral striatum, orbitofrontal and anterior insular cortices. The system formed by these interconnected areas assesses the motivational content of internal and external stimuli and regulates context-dependent behaviours.

3,245 citations

Journal ArticleDOI
01 May 1998-Science
TL;DR: Results confirm that this region shows activity during erroneous responses, but activity was also observed in the same region during correct responses under conditions of increased response competition, which suggests that the ACC detects conditions under which errors are likely to occur rather than errors themselves.
Abstract: An unresolved question in neuroscience and psychology is how the brain monitors performance to regulate behavior. It has been proposed that the anterior cingulate cortex (ACC), on the medial surface of the frontal lobe, contributes to performance monitoring by detecting errors. In this study, event-related functional magnetic resonance imaging was used to examine ACC function. Results confirm that this region shows activity during erroneous responses. However, activity was also observed in the same region during correct responses under conditions of increased response competition. This suggests that the ACC detects conditions under which errors are likely to occur rather than errors themselves.

3,236 citations

Journal ArticleDOI
TL;DR: The following discussion presents some anatomic, clinical and experimental data dealing with the hypothalamus, the gyrus cinguli, the hippocampus and their interconnections, which are proposed as representing theoretically the anatomic basis of the emotions.
Abstract: The work of Cannon,1Bard,2Penfield,3Ranson4and others has greatly advanced knowledge of the functions of the hypothalamus. In the light of these researches the connections of the hypothalamus to the medial wall of the cerebral cortex gain a new significance. The following discussion presents some anatomic, clinical and experimental data dealing with the hypothalamus, the gyrus cinguli, the hippocampus and their interconnections. Taken as a whole, this ensemble of structures is proposed as representing theoretically the anatomic basis of the emotions. It is generally recognized that in the brain of lower vertebrates the medial wall of the cerebral hemisphere is connected anatomically and integrated physiologically with the hypothalamus and that the lateral wall is similarly related to the dorsal thalamus (Herrick5). These fundamental relations are not only retained but greatly elaborated in the mammalian brain by the further development of the hippocampal formation

3,222 citations