scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Coherent states for parabosons

07 Sep 1997-Journal of Physics A (IOP Publishing)-Vol. 30, Iss: 17
TL;DR: In this article, the coherent states for odd and even order parabosons were constructed by taking into consideration that the Fock space of a parabose oscillator may be described by bilinear commutation relations involving creation and annihilation operators.
Abstract: Taking into consideration that the Fock space of a parabose oscillator may be described by bilinear commutation relations involving creation and annihilation operators, we construct the coherent states for odd and even order parabosons.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a two-mode paraboson coherent state basis is obtained, where the cat-type states are diagonalized and the matrix elements of the coherent matrix are calculated.
Abstract: We introduce and obtain two-mode paraboson coherent states. In appropriate subspaces these coherent states provide a decomposition of unity where the measure, when expressed using the cat-type states, is positive definite. Bicoherent states where the mutually commuting lowering operators are diagonalized are also obtained. Matrix elements in the coherent state basis are calculated.

2 citations

Journal ArticleDOI
TL;DR: In this paper, the authors introduce and obtain multimode paraboson coherent states, which provide a decomposition of unity where the measure, when expressed using the cat-type states, is positive definite.
Abstract: We introduce and obtain multimode paraboson coherent states. In appropriate subspaces these coherent states provide a decomposition of unity where the measure, when expressed using the cat-type states, is positive definite. Bicoherent states where the mutually commuting lowering operators are diagonalized are also obtained. Matrix elements in the coherent state basis are calculated.

2 citations

Journal ArticleDOI
TL;DR: In this article , the authors construct integrals of motion in a para-Bose formulation for a general time-dependent quadratic Hamiltonian, which, in turn, commutes with the reflection operator.
Abstract: In this paper, we construct integrals of motion in a para-Bose formulation for a general time-dependent quadratic Hamiltonian, which, in its turn, commutes with the reflection operator. In this context, we obtain generalizations for the squeezed vacuum states (SVS) and coherent states (CS) in terms of the Wigner parameter. Furthermore, we show that there is a completeness relation for the generalized SVS owing to the Wigner parameter. In the study of the probability transition, we found that the displacement parameter acts as a transition parameter by allowing access to odd states, while the Wigner parameter controls the dispersion of the distribution. We show that the Wigner parameter is quantized by imposing that the vacuum state has even parity. We apply the general results to the case of the time-independent para-Bose oscillator and find that the mean values of the coordinate and momentum have an oscillatory behavior similarly to the simple harmonic oscillator, while the standard deviation presents corrections in terms of the squeeze, displacement, and Wigner parameters.

1 citations

References
More filters
Book
27 Aug 1986
TL;DR: In this paper, the authors define the notion of generalized coherent states and define a generalization of the Coherent State Representation T?(g) of the Heisenberg-Weyl Group.
Abstract: I Generalized Coherent States for the Simplest Lie Groups.- 1. Standard System of Coherent States Related to the Heisenberg-Weyl Group: One Degree of Freedom.- 1.1 The Heisenberg-Weyl Group and Its Representations.- 1.1.1 The Heisenberg-Weyl Group.- 1.1.2 Representations of the Heisenberg-Weyl Group.- 1.1.3 Concrete Realization of the Representation T?(g).- 1.2 Coherent States.- 1.3 The Fock-Bargmann Representation.- 1.4 Completeness of Coherent-State Subsystems.- 1.5 Coherent States and Theta Functions.- 1.6 Operators and Their Symbols.- 1.7 Characteristic Functions.- 2. Coherent States for Arbitrary Lie Groups.- 2.1 Definition of the Generalized Coherent State.- 2.2 General Properties of Coherent-State Systems.- 2.3 Completeness and Expansion in States of the CS System.- 2.4 Selection of Generalized CS Systems with States Closest to Classical.- 3. The Standard System of Coherent States Several Degrees of Freedom.- 3.1 General Properties.- 3.2 Coherent States and Theta Functions for Several Degrees of Freedom.- 4. Coherent States for the Rotation Group of Three-Dimensional Space.- 4.1 Structure of the Groups SO(3) and SU(2).- 4.2 Representations of SU(2).- 4.3 Coherent States.- 5. The Most Elementary Noneompact, Non-Abelian Simple Lie Group: SU(1,1).- 5.1 Group SU(1,1) and Its Representations.- 5.1.1 Fundamental Properties ofU(1,1) 67.- 5.1.2 Discrete Series.- 5.1.3 Principal (Continuous) Series.- 5.2 Coherent States.- 5.2.1 Discrete Series.- 5.2.2 Principal (Continuous) Series.- 6. The Lorentz Group: SO(3,1).- 6.1 Representations of the Lorentz Group.- 6.2 Coherent States.- 7. Coherent States for the SO(n, 1) Group: Class-1 Representations of the Principal Series.- 7.1 Class-I Representations of SO(n,1).- 7.2 Coherent States.- 8. Coherent States for a Bosonic System with Finite Number of Degrees of Freedom.- 8.1 Canonical Transformations.- 8.2 Coherent States.- 8.3 Operators in the Space ?B(+).- 9. Coherent States for a Fermionic System with Finite Number of Degrees of Freedom.- 9.1 Canonical Transformations.- 9.2 Coherent States.- 9.3 Operators in the Space ?F(+).- II General Case.- 10. Coherent States for Nilpotent Lie Groups.- 10.1 Structure of Nilpotent Lie Groups.- 10.2 Orbits of Coadjoint Representation.- 10.3 Orbits of Nilpotent Lie Groups.- 10.4 Representations of Nilpotent Lie Groups.- 10.5 Coherent States.- 11. Coherent States for Compact Semisimple Lie Groups.- 11.1 Elements of the Theory of Compact Semisimple Lie Groups..- 11.2 Representations of Compact Simple Lie Groups.- 11.3 Coherent States.- 12. Discrete Series of Representations: The General Case.- 12.1 Discrete Series.- 12.2 Bounded Domains.- 12.3 Coherent States.- 13. Coherent States for Real Semisimple Lie Groups: Class-I Representations of Principal Series.- 13.1 Class-I Representations.- 13.2 Coherent States.- 13.3 Horocycles in Symmetric Space.- 13.4 Rank-1 Symmetric Spaces.- 13.5 Properties of Rank-1 CS Systems.- 13.6 Complex Homogeneous Bounded Domains.- 13.6.1 Type-I Tube Domains.- 13.6.2 Type-II Tube Domains.- 13.6.3 Type-III Tube Domains.- 13.6.4 Type-IV Domains.- 13.6.5 The Exceptional Domain Dv.- 13.7 Properties of the Coherent States.- 14. Coherent States and Discrete Subgroups: The Case of SU(1,1).- 14.1 Preliminaries.- 14.2 Incompleteness Criterion for CS Subsystems Related to Discrete Subgroups.- 14.3 Growth of a Function Analytical in a Disk Related to the Distribution of Its Zeros.- 14.4 Completeness Criterion for CS Subsystems.- 14.5 Discrete Subgroups of SU(1,1) and Automorphic Forms.- 15. Coherent States for Discrete Series and Discrete Subgroups: General Case.- 15.1 Automorphic Forms.- 15.2 Completeness of Some CS Subsystems.- 16. Coherent States and Berezin's Quantization.- 16.1 Classical Mechanics.- 16.2 Quantization.- 16.3 Quantization on the Lobachevsky Plane.- 16.3.1 Description of Operators.- 16.3.2 The Correspondence Principle.- 16.3.3 Operator Th in Terms of a Laplacian.- 16.3.4 Representation of Group of Motions of the Lobachevsky Plane in Space ?h.- 16.3.5 Quantization by Inversions Analog to Weyl Quantization.- 16.4 Quantization on a Sphere.- 16.5 Quantization on Homogeneous Kahler Manifolds.- III Physical Applications.- 17. Preliminaries.- 18. Quantum Oscillators.- 18.1 Quantum Oscillator Acted on by a Variable External Force..- 18.2 Parametric Excitation of a Quantum Oscillator.- 18.3 Quantum Singular Oscillator.- 18.3.1 The Stationary Case.- 18.3.2 The Nonstationary Case.- 18.3.3 The Case of N Interacting Particles.- 18.4 Oscillator with Variable Frequency Acted on by an External Force.- 19. Particles in External Electromagnetic Fields.- 19.1 Spin Motion in a Variable Magnetic Field.- 19.2 Boson Pair Production in a Variable Homogeneous External Field.- 19.2.1 Dynamical Symmetry for Scalar Particles.- 19.2.2 The Multidimensional Case: Coherent States.- 19.2.3 The Multidimensional Case: Nonstationary Problem..- 19.3 Fermion Pair Production in a Variable Homogeneous External Field.- 19.3.1 Dynamical Symmetry for Spin-1/2 particles.- 19.3.2 Heisenberg Representation.- 19.3.3 The Multidimensional Case: Coherent States.- 20. Generating Function for Clebsch-Gordan Coefficients of the SU(2) group.- 21. Coherent States and the Quasiclassical Limit.- 22. 1/N Expansion for Gross-Neveu Models.- 22.1 Description of the Model.- 22.2 Dimensionality of Space ?N= ?O in the Fermion Case.- 22.3 Quasiclassical Limit.- 23. Relaxation to Thermodynamic Equilibrium.- 23.1 Relaxation of Quantum Oscillator to Thermodynamic Equilibrium.- 23.1.1 Kinetic Equation.- 23.1.2 Characteristic Functions and Quasiprobability Distributions.- 23.1.3 Use of Operator Symbols.- 23.2 Relaxation of a Spinning Particle to Thermodynamic Equilibrium in the Presence of a Magnetic Field.- 24. Landau Diamagnetism.- 25. The Heisenberg-Euler Lagrangian.- 26. Synchrotron Radiation.- 27. Classical and Quantal Entropy.- Appendix A. Proof of Completeness for Certain CS Subsystems.- Appendix B. Matrix Elements of the Operator D(y).- Appendix C. Jacobians of Group Transformations for Classical Domains.- Further Applications of the CS Method.- References.- Subject-Index.- Addendum. Further Applications of the CS Method.- References.- References to Addendum.- Subject-Index.

3,565 citations

Journal ArticleDOI
TL;DR: In this paper, the quantum-mechanical problems of N 1-dimensional equal particles of mass m interacting pairwise via quadratic (harmonical) and/or inverse (centrifugal) potentials is solved.
Abstract: The quantum‐mechanical problems of N 1‐dimensional equal particles of mass m interacting pairwise via quadratic (``harmonical'') and/or inversely quadratic (``centrifugal'') potentials is solved. In the first case, characterized by the pair potential ¼mω2(xi − xj)2 + g(xi − xj)−2, g > −ℏ2/(4m), the complete energy spectrum (in the center‐of‐mass frame) is given by the formula E=ℏω(12N)12[12(N−1)+12N(N−1)(a+12)+ ∑ l=2Nlnl], with a = ½(1 + 4mgℏ−2)½. The N − 1 quantum numbers nl are nonnegative integers; each set {nl; l = 2, 3, ⋯, N} characterizes uniquely one eigenstate. This energy spectrum can also be written in the form Es = ℏω(½N)½ [½(N − 1) + ½N(N − 1)(a + ½) + s], s = 0, 2, 3, 4, ⋯, the multiplicity of the sth level being then given by the number of different sets of N − 1 nonnegative integers nl that are consistent with the condition s=∑l=2Nlnl. These equations are valid independently of the statistics that the particles satisfy, if g ≠ 0; for g = 0, the equations remain valid with a = ½ for Fermi st...

1,454 citations

Journal ArticleDOI
TL;DR: In this paper, a falshe Verschiebung der Spektrallinie in der Richtung des helleren Teiles des Hintergrundes angibt.
Abstract: v o n d e r Achse nur einen Betrag yon 0 \" , i 8 erreicht und dem EINSTEINeffekte entgegengesetzt ist, so dab die Resultate yon CAMPBELL nicht dutch denselben beeintr~chtigt werden. Ich muI3 nur hinzuffigen, dab der EinfluB der verschiedehen Tubusla.nge anf die Verzeiehnung hierbei nicht in Betracht gezogen wurde. Aber auch be~ der Ausmessung der Plat ten unter Einstellung mit einem Fadenkreuze kann das Vorhandensein des Koronarlichtes auf der einen Platte eine Fehlerquelle bedeuten. Bei der Ausmessung yon R6ntgenspektrographischen Platten hat BKCKLIN im Inst i tute yon SIEGBAttN den Effekt des unsymmetrisehen Kontrastes beobachtet und beschrieben. Die Folge desselben ist, dab das Messungsresultat eine falsehe Verschiebung der Spektrallinie in der Richtung des helleren Teiles des Hintergrundes angibt. Dieser Kontrasteffekt mug also be~drken, dab das Koronarlicht eine falsche Verschiebung des gemessenen Sternbildes in der Richtung yon der Sonne weg zur Folge hat, w~hrend wahrscheinlich richtig auf das Vergleiehsbi-ld eingestellt werden kann, da dasselbe nicht in der geschw/irzten Schieht eingebettet Iiegt. Ob aber diese Verschiebung yon einer solchen Gr613enordnung ist, dab sie in Betracht kommt, l~f3t sich nicht vorhersagen. AuI alle F~tlle erfordert eine m6glichst differenfielle Messung, dab die zu vergleichenden Photographien mit Expositionszeiten, die m6glichst gleiche Sternbilder geben, auf einer und derselben Platte aufgenommen werden, welche zwischen den Aufnahmen ein wenig um die Achse des Objektives in bezug auf das Feld gedreht wird. yon der Mikroz u r M a k r o m e c h a n i k . [ Die Naturlwis~enschaften

1,267 citations

Journal ArticleDOI
TL;DR: In this article, the problem of three equal particles interacting pairwise by inversecube forces (centrifugal potential) in addition to linear forces (harmonical potential) is solved in one dimension.
Abstract: The problem of three equal particles interacting pairwise by inversecube forces (``centrifugal potential'') in addition to linear forces (``harmonical potential'') is solved in one dimension.

1,015 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that spin-half fields can be quantized in such a way that an arbitrary finite number of particles can exist in each eigenstate, and that the interchange of two particles of the same kind may or may not be physically significant, according to the type of interaction by means of which they are created or annihilated.
Abstract: A method of field quantization is investigated which is more general than the usual methods of quantization in accordance with Bose of Fermi statistics, though these are included in the scheme. The commutation properties and matrix representations of the quantized field amplitudes are determined, and the energy levels of the field are derived in the usual way. It is shown that spin-half fields can be quantized in such a way that an arbitrary finite number of particles can exist in each eigenstate. With the generalized statistics, the interchange of two particles of the same kind may or may not be physically significant, according to the type of interaction by means of which they are created or annihilated. Physical consequences of the assumption that there are particles which obey the generalized statistics are briefly examined.

763 citations