scispace - formally typeset
Journal ArticleDOI

Coherent X‐Ray Scattering for the Hydrogen Atom in the Hydrogen Molecule

01 May 1965-Journal of Chemical Physics (American Institute of PhysicsAIP)-Vol. 42, Iss: 9, pp 3175-3187

...read more


Citations
More filters
Journal ArticleDOI

[...]

TL;DR: In the last few years, the analysis of molecular crystal structures using tools based on Hirshfeld surfaces has rapidly gained in popularity as mentioned in this paper, which represents an attempt to venture beyond the current paradigm of nuclear distances and angles, crystal packing diagrams with molecules represented via various models, and to view molecules as organic wholes.
Abstract: In the last few years the analysis of molecular crystal structures using tools based on Hirshfeld surfaces has rapidly gained in popularity. This approach represents an attempt to venture beyond the current paradigm—internuclear distances and angles, crystal packing diagrams with molecules represented via various models, and the identification of close contacts deemed to be important—and to view molecules as “organic wholes”, thereby fundamentally altering the discussion of intermolecular interactions through an unbiased identification of all close contacts.

3,581 citations

Journal ArticleDOI

[...]

TL;DR: Due to wide application of MolProbity validation and corrections by the research community, in Phenix, and at the worldwide Protein Data Bank, newly deposited structures have continued to improve greatly as measured by Mol probity's unique all‐atom clashscore.
Abstract: This paper describes the current update on macromolecular model validation services that are provided at the MolProbity website, emphasizing changes and additions since the previous review in 2010. There have been many infrastructure improvements, including rewrite of previous Java utilities to now use existing or newly written Python utilities in the open-source CCTBX portion of the Phenix software system. This improves long-term maintainability and enhances the thorough integration of MolProbity-style validation within Phenix. There is now a complete MolProbity mirror site at http://molprobity.manchester.ac.uk. GitHub serves our open-source code, reference datasets, and the resulting multi-dimensional distributions that define most validation criteria. Coordinate output after Asn/Gln/His "flip" correction is now more idealized, since the post-refinement step has apparently often been skipped in the past. Two distinct sets of heavy-atom-to-hydrogen distances and accompanying van der Waals radii have been researched and improved in accuracy, one for the electron-cloud-center positions suitable for X-ray crystallography and one for nuclear positions. New validations include messages at input about problem-causing format irregularities, updates of Ramachandran and rotamer criteria from the million quality-filtered residues in a new reference dataset, the CaBLAM Cα-CO virtual-angle analysis of backbone and secondary structure for cryoEM or low-resolution X-ray, and flagging of the very rare cis-nonProline and twisted peptides which have recently been greatly overused. Due to wide application of MolProbity validation and corrections by the research community, in Phenix, and at the worldwide Protein Data Bank, newly deposited structures have continued to improve greatly as measured by MolProbity's unique all-atom clashscore.

1,094 citations

Journal ArticleDOI

[...]

TL;DR: It is shown that the AMOEBA force field is in fact a significant improvement over fixed charge models for small molecule structural and thermodynamic observables in particular, although further fine-tuning is necessary to describe solvation free energies of drug-like small molecules, dynamical properties away from ambient conditions, and possible improvements in aromatic interactions.
Abstract: Molecular force fields have been approaching a generational transition over the past several years, moving away from well-established and well-tuned, but intrinsically limited, fixed point charge models toward more intricate and expensive polarizable models that should allow more accurate description of molecular properties. The recently introduced AMOEBA force field is a leading publicly available example of this next generation of theoretical model, but to date, it has only received relatively limited validation, which we address here. We show that the AMOEBA force field is in fact a significant improvement over fixed charge models for small molecule structural and thermodynamic observables in particular, although further fine-tuning is necessary to describe solvation free energies of drug-like small molecules, dynamical properties away from ambient conditions, and possible improvements in aromatic interactions. State of the art electronic structure calculations reveal generally very good agreement with...

958 citations

Journal ArticleDOI

[...]

TL;DR: The authors would like to thank M. Chabinyc, H. Ade, B. Noriega, K. Vandewal, and D. Duong for fruitful discussions in the preparation of this review and the Center for Advanced Molecular Photovoltaics for funding.
Abstract: The authors would like to thank M. Chabinyc, H. Ade, B. Collins, R. Noriega, K. Vandewal, and D. Duong for fruitful discussions in the preparation of this review. Stanford Synchrotron Radiation Lightsource (SSRL) is a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. This publication was partially supported by the Center for Advanced Molecular Photovoltaics (Award No. KUS-C1-015-21), made by King Abdullah University of Science and Technology (KAUST).

890 citations

Journal ArticleDOI

[...]

TL;DR: For nearly spherical molecules, the x-ray scattering from liquids yields structure and correlation functions for molecular scattering centers as discussed by the authors, which provide a sensitive test for future work on a molecular theory of liquid water.
Abstract: For nearly spherical molecules the x‐ray scattering from liquids yields structure and correlation functions for molecular scattering centers. The distribution of electron density in a water molecule is very nearly spherical, and orientational correlation between molecules in the liquid is not ``seen'' by x rays. Structure and correlation functions for molecular scattering centers are derived from x‐ray data on water and tabulated. They provide a sensitive test for future work on a molecular theory of liquid water.

605 citations


References
More filters
Journal ArticleDOI

[...]

TL;DR: In this article, the quantum mechanical wave functions of molecules are discussed and an attempt is made to effect a simultaneous regional and physical partitioning of the molecular density, the molecular pair density, and the molecular energy, in such a way that meaningful concepts can be associated with the density and energy fragments thus formed.
Abstract: The quantum mechanical wave functions of molecules are discussed. An attempt is made to effect a simultaneous regional and physical partitioning of the molecular density, the molecular pair density, and the molecular energy, in such a way that meaningful concepts can be associated with the density and energy fragments thus formed. The origin of chemical binding is interpreted in terms of the concepts formulated in the partitioning process. (T.F.H.)

713 citations

Journal ArticleDOI

[...]

569 citations

Journal ArticleDOI

[...]

S. C. Wang1
TL;DR: The solution of Schroedinger's equation for the normal hydrogen molecule is approximated by the function $C[{e}^{\ensuremath{-}\frac{z({r}_{1}+{p}_{2})}{a}}+{e^{\ensem{-]-{m{e})+{m}−m{n}−n}]$ where m is the distance of one of the electrons to the two nuclei, and r is the distances of one electron to the other electron.
Abstract: The solution of Schroedinger's equation for the normal hydrogen molecule is approximated by the function $C[{e}^{\ensuremath{-}\frac{z({r}_{1}+{p}_{2})}{a}}+{e}^{\ensuremath{-}\frac{z({r}_{2}+{p}_{1})}{a}}]$ where $a=\frac{{h}^{2}}{4{\ensuremath{\pi}}^{2}m{e}^{2}}$, ${r}_{1}$ and ${p}_{1}$ are the distances of one of the electrons to the two nuclei, and ${r}_{2}$ and ${p}_{2}$ those for the other electron. The value of $Z$ is so determined as to give a minimum value to the variational integral which generates Schroedinger's wave equation. This minimum value of the integral gives the approximate energy $E$. For every nuclear separation $D$, there is a $Z$ which gives the best approximation and a corresponding $E$. We thus obtain an approximate energy curve as a function of the separation. The minimum of this curve gives the following data for the configuration corresponding to the normal hydrogen molecule: the heat of dissociation = 3.76 volts, the moment of inertia ${J}_{0}=4.59\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}41}$ gr. ${\mathrm{cm}}^{2}$, the nuclear vibrational frequency ${\ensuremath{ u}}_{0}=4900$ ${\mathrm{cm}}^{\ensuremath{-}1}$.

289 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, a simple wave function for the normal state of the hydrogen molecule, in which both the atomic and ionic configurations are taken into account, was set up and treated by a variational method.
Abstract: A simple wave function for the normal state of the hydrogen molecule, in which both the atomic and ionic configurations are taken into account, was set up and treated by a variational method. The dissociation energy was found to be 4.00 v.e. as compared to the experimental value of 4.68 v.e. and Rosen's value of 4.02 v.e. obtained by use of a function involving complicated integrals. It was found that the atomic function occurs with a coefficient 3.9 times that of the ionic function. A similar function with different screening constants for the atomic and ionic parts was also tried. It was found that the best results are obtained when these screening constants are equal. The addition of Rosen's term to the atomic‐ionic function resulted in a value of 4.10 v.e. for the dissociation energy.

248 citations

Journal ArticleDOI

[...]

131 citations