scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Coinage Metal−N-Heterocyclic Carbene Complexes

10 Apr 2009-Chemical Reviews (American Chemical Society)-Vol. 109, Iss: 8, pp 3561-3598
TL;DR: This work presents a meta-analysis of multi-NHCs Linked by Spacers and its applications in Catalysis and Nanomaterials, which shows clear trends in both the number and complexity of the components and their applications.
Abstract: 2.3.5. Multi-NHCs Linked by Spacers 3568 2.4. The Ag2O Route 3570 2.4.1. Feasibility 3570 2.4.2. Complications 3571 2.4.3. Theoretical Consideration 3572 2.5. Applications 3572 2.5.1. Ag(I)-NHCs in NHC Transfer 3572 2.5.2. Ag(I)-NHCs in Catalysis 3572 2.5.3. Ag(I)-NHCs in Medicine 3572 2.5.4. Ag(I)-NHCs in Nanomaterials 3573 3. Au(I)and Au(III)-NHCs 3573 3.1. Historical Background 3573 3.2. General Synthetic Methods 3573 3.3. Formation of Au(I)and Au(III)-NHCs 3574 3.3.1. Neutral [Au(NHC)L] 3574 3.3.2. Ionic [Au(NHC)L][Anion] 3576 3.3.3. Multinuclear Au(I)-NHCs 3578 3.3.4. Other Classes of Au(I)-NHCs 3578 3.3.5. Au(III)-NHC Complexes 3579 3.4. Applications 3579 3.4.1. Au(I)and Au(III)-NHCs in Catalysis 3579 3.4.2. Au(I)-NHCs in Medicine 3580 4. Cu(I)and Cu(II)-NHCs 3581 4.1. Historical Background 3581 4.2. General Synthetic Methods 3582 4.3. Formation of Cu(I)and Cu(II)-NHCs 3583 4.3.1. Complexes Containing the Cu(NHC)2 Core 3583 4.3.2. [Cu(NHC)(Halide)] 3583 4.3.3. [Cu(NHC)(Ligand)] 3584 4.3.4. Multinuclear Cu(I)and Cu(II)-NHCs 3589 4.4. Catalysis 3591 4.4.1. Past Events 3591 4.4.2. Recent Advancements 3591 5. Photoluminescence 3592 6. Conclusions 3594 7. Abbreviations 3594 8. Acknowledgments 3595 9. References 3595
Citations
More filters
Journal ArticleDOI
TL;DR: This perspective aims to highlight the benefits of synergistic catalysis using many of the successful examples of synergism catalysis found in the literature.
Abstract: Synergistic catalysis is a synthetic strategy wherein both the nucleophile and the electrophile are simultaneously activated by two separate and distinct catalysts to afford a single chemical transformation. This powerful catalysis strategy leads to several benefits, specifically synergistic catalysis can (i) introduce new, previously unattainable chemical transformations, (ii) improve the efficiency of existing transformations, and (iii) create or improve catalytic enantioselectivity where stereocontrol was previously absent or challenging. This perspective aims to highlight these benefits using many of the successful examples of synergistic catalysis found in the literature.

896 citations

Journal ArticleDOI
TL;DR: During the last five years, new types of stable cyclic carbenes, as well as related carbon-based ligands (which are not NHCs), and which feature even stronger σ-donor properties have been developed.
Abstract: The success of homogeneous catalysis can be attributed largely to the development of a diverse range of ligand frameworks that have been used to tune the behavior of various systems. Spectacular results in this area have been achieved using cyclic diaminocarbenes (NHCs) as a result of their strong σ-donor properties. Although it is possible to cursorily tune the structure of NHCs, any diversity is still far from matching their phosphorus-based counterparts, which is one of the great strengths of the latter. A variety of stable acyclic carbenes are known, but they are either reluctant to bind metals or they give rise to fragile metal complexes. During the last five years, new types of stable cyclic carbenes, as well as related carbon-based ligands (which are not NHCs), and which feature even stronger σ-donor properties have been developed. Their synthesis and characterization as well as the stability, electronic properties, coordination behavior, and catalytic activity of the ensuing complexes are discussed, and comparisons with their NHC cousins are made.

881 citations

Journal ArticleDOI
TL;DR: The intention of this review is to provide a detailed analysis of the various supramolecular interactions of triazoles in comparison to established functional units, which may serve as guidelines for further applications.
Abstract: The research on 1,2,3-triazoles has been lively and ever-growing since its stimulation by the advent of click chemistry The attractiveness of 1H-1,2,3-triazoles and their derivatives originates from their unique combination of facile accessibility via click chemistry and truly diverse supramolecular interactions, which enabled myriads of applications in supramolecular and coordination chemistry The nitrogen-rich triazole features a highly polarized carbon atom allowing the complexation of anions by hydrogen and halogen bonding or, in the case of the triazolium salts, via charge-assisted hydrogen and halogen bonds On the other hand, the triazole offers several N-coordination modes including coordination via anionic and cationic nitrogen donors of triazolate and triazolium ions, respectively After CH-deprotonation of the triazole and the triazolium, powerful carbanionic and mesoionic carbene donors, respectively, are available The latter coordination mode even features non-innocent ligand behavior Moreover, these supramolecular interactions can be combined, eg, in ion-pair recognition, preorganization by intramolecular hydrogen bond donation and acceptance, and in bimetallic complexes Ultimately, by clicking two building blocks into place, the triazole emerges as a most versatile functional unit allowing very successful applications, eg, in anion recognition, catalysis, and photochemistry, thus going far beyond the original purpose of click chemistry It is the intention of this review to provide a detailed analysis of the various supramolecular interactions of triazoles in comparison to established functional units, which may serve as guidelines for further applications

626 citations

References
More filters
Journal ArticleDOI
TL;DR: Synthese, structure et caracterisation du (1,3-bis [1-adamantyl]-2, 3-dihydro)-2,carbenoimidazole prepare par deprotonation du chlorure de (1 3-bis] [1]- imidazolium as discussed by the authors.
Abstract: Synthese, structure et caracterisation du (1,3-bis [1-adamantyl]-2,3-dihydro)-2-carbenoimidazole prepare par deprotonation du chlorure de (1,3-bis [1-adamantyl]) imidazolium

3,414 citations

Journal ArticleDOI
TL;DR: Important vinylgold intermediates, the transmetalation from gold to other transition metals, the development of new ligands for gold catalysis, and significant contributions from computational chemistry are other crucial points for the field highlighted here.
Abstract: Although homogeneous gold catalysis was known previously, an exponential growth was only induced 12 years ago. The key findings which induce that rise of the field are discussed. This includes early reactions of allenes and furanynes and intermediates of these conversions as well as hydroarylation reactions. Other substrate types addressed are alkynyl epoxides and N-propargyl carboxamides. Important vinylgold intermediates, the transmetalation from gold to other transition metals, the development of new ligands for gold catalysis, and significant contributions from computational chemistry are other crucial points for the field highlighted here.

2,792 citations

Journal ArticleDOI
TL;DR: New methods for the synthesis of complexes with N-heterocyclic carbene ligands such as the oxidative addition or the metal atom template controlled cyclized isocyanides have been developed recently.
Abstract: The chemistry of heterocyclic carbenes has experienced a rapid development over the last years. In addition to the imidazolin-2-ylidenes, a large number of cyclic diaminocarbenes with different ring sizes have been described. Aside from diaminocarbenes, P-heterocyclic carbenes, and derivatives with only one, or even no heteroatom within the carbene ring are known. New methods for the synthesis of complexes with N-heterocyclic carbene ligands such as the oxidative addition or the metal atom template controlled cyclization of β-functionalized isocyanides have been developed recently. This review summarizes the new developments regarding the synthesis of N-heterocyclic carbenes and their metal complexes.

2,454 citations

Journal ArticleDOI
TL;DR: The inversion of the classical reactivity (Umpolung) opens up new synthetic pathways in biochemical processes as nucleophilic acylations and in nature, the coenzyme thiamine (vitamin B1), a natural thiazolium salt, utilizes a catalytic variant of this concept in biochemical process as nucleophile acylation.
Abstract: In the investigation of efficient chemical transformations, the carbon-carbon bond-forming reactions play an outstanding role. In this context, organocatalytic processes have achieved considerable attention. 1 Beside their facile reaction course, selectivity, and environmental friendliness, new synthetic strategies are made possible. Particularly, the inversion of the classical reactivity (Umpolung) opens up new synthetic pathways. 2 In nature, the coenzyme thiamine (vitamin B1), a natural thiazolium salt, utilizes a catalytic variant of this concept in biochemical processes as nucleophilic acylations. 3 The catalytically active species is a nucleophilic carbene. 4

2,351 citations

Journal ArticleDOI
TL;DR: The ability of platinum and gold catalysts to effect powerful atom-economic transformations has led to a marked increase in their utilization and the application of platinum- and gold-catalyzed transformations in natural product synthesis is discussed.
Abstract: The ability of platinum and gold catalysts to effect powerful atom-economic transformations has led to a marked increase in their utilization. The quite remarkable correlation of their catalytic behavior with the available structural data, coordination chemistry, and organometallic reactivity patterns, including relativistic effects, allows the underlying principles of catalytic carbophilic activation by π acids to be formulated. The spectrum of reactivity extends beyond their utility as catalytic and benign alternatives to conventional stoichiometric π acids. The resulting reactivity profile allows this entire field of catalysis to be rationalized, and brings together the apparently disparate electrophilic metal carbene and nonclassical carbocation explanations. The advances in coupling, cycloisomerization, and structural reorganization—from the design of new transformations to the improvement to known reactions—are highlighted in this Review. The application of platinum- and gold-catalyzed transformations in natural product synthesis is also discussed.

1,938 citations