scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Colorectal cancer screening for average-risk adults: 2018 guideline update from the American Cancer Society

TL;DR: This guideline update used an existing systematic evidence review of the CRC screening literature and microsimulation modeling analyses, including a new evaluation of the age to begin screening by race and sex and additional modeling that incorporates changes in US CRC incidence.
Abstract: In the United States, colorectal cancer (CRC) is the fourth most common cancer diagnosed among adults and the second leading cause of death from cancer. For this guideline update, the American Cancer Society (ACS) used an existing systematic evidence review of the CRC screening literature and microsimulation modeling analyses, including a new evaluation of the age to begin screening by race and sex and additional modeling that incorporates changes in US CRC incidence. Screening with any one of multiple options is associated with a significant reduction in CRC incidence through the detection and removal of adenomatous polyps and other precancerous lesions and with a reduction in mortality through incidence reduction and early detection of CRC. Results from modeling analyses identified efficient and model-recommendable strategies that started screening at age 45 years. The ACS Guideline Development Group applied the Grades of Recommendations, Assessment, Development, and Evaluation (GRADE) criteria in developing and rating the recommendations. The ACS recommends that adults aged 45 years and older with an average risk of CRC undergo regular screening with either a high-sensitivity stool-based test or a structural (visual) examination, depending on patient preference and test availability. As a part of the screening process, all positive results on noncolonoscopy screening tests should be followed up with timely colonoscopy. The recommendation to begin screening at age 45 years is a qualified recommendation. The recommendation for regular screening in adults aged 50 years and older is a strong recommendation. The ACS recommends (qualified recommendations) that: 1) average-risk adults in good health with a life expectancy of more than 10 years continue CRC screening through the age of 75 years; 2) clinicians individualize CRC screening decisions for individuals aged 76 through 85 years based on patient preferences, life expectancy, health status, and prior screening history; and 3) clinicians discourage individuals older than 85 years from continuing CRC screening. The options for CRC screening are: fecal immunochemical test annually; high-sensitivity, guaiac-based fecal occult blood test annually; multitarget stool DNA test every 3 years; colonoscopy every 10 years; computed tomography colonography every 5 years; and flexible sigmoidoscopy every 5 years. CA Cancer J Clin 2018;68:250-281. © 2018 American Cancer Society.
Citations
More filters
Journal ArticleDOI
TL;DR: The GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer (IARC) as mentioned in this paper show that female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung cancer, colorectal (11 4.4%), liver (8.3%), stomach (7.7%) and female breast (6.9%), and cervical cancer (5.6%) cancers.
Abstract: This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.

35,190 citations

Journal ArticleDOI
TL;DR: Progress against CRC can be accelerated by increasing access to guideline‐recommended screening and high‐quality treatment, particularly among Alaska Natives, and elucidating causes for rising incidence in young and middle‐aged adults.
Abstract: Colorectal cancer (CRC) is the second most common cause of cancer death in the United States. Every 3 years, the American Cancer Society provides an update of CRC occurrence based on incidence data (available through 2016) from population-based cancer registries and mortality data (through 2017) from the National Center for Health Statistics. In 2020, approximately 147,950 individuals will be diagnosed with CRC and 53,200 will die from the disease, including 17,930 cases and 3,640 deaths in individuals aged younger than 50 years. The incidence rate during 2012 through 2016 ranged from 30 (per 100,000 persons) in Asian/Pacific Islanders to 45.7 in blacks and 89 in Alaska Natives. Rapid declines in incidence among screening-aged individuals during the 2000s continued during 2011 through 2016 in those aged 65 years and older (by 3.3% annually) but reversed in those aged 50 to 64 years, among whom rates increased by 1% annually. Among individuals aged younger than 50 years, the incidence rate increased by approximately 2% annually for tumors in the proximal and distal colon, as well as the rectum, driven by trends in non-Hispanic whites. CRC death rates during 2008 through 2017 declined by 3% annually in individuals aged 65 years and older and by 0.6% annually in individuals aged 50 to 64 years while increasing by 1.3% annually in those aged younger than 50 years. Mortality declines among individuals aged 50 years and older were steepest among blacks, who also had the only decreasing trend among those aged younger than 50 years, and excluded American Indians/Alaska Natives, among whom rates remained stable. Progress against CRC can be accelerated by increasing access to guideline-recommended screening and high-quality treatment, particularly among Alaska Natives, and elucidating causes for rising incidence in young and middle-aged adults.

2,928 citations

Journal ArticleDOI
21 Jun 2016-JAMA
TL;DR: It is concluded with high certainty that screening for colorectal cancer in average-risk, asymptomatic adults aged 50 to 75 years is of substantial net benefit.
Abstract: Importance Colorectal cancer is the second leading cause of cancer death in the United States. In 2016, an estimated 134 000 persons will be diagnosed with the disease, and about 49 000 will die from it. Colorectal cancer is most frequently diagnosed among adults aged 65 to 74 years; the median age at death from colorectal cancer is 73 years. Objective To update the 2008 US Preventive Services Task Force (USPSTF) recommendation on screening for colorectal cancer. Evidence Review The USPSTF reviewed the evidence on the effectiveness of screening with colonoscopy, flexible sigmoidoscopy, computed tomography colonography, the guaiac-based fecal occult blood test, the fecal immunochemical test, the multitargeted stool DNA test, and the methylated SEPT9 DNA test in reducing the incidence of and mortality from colorectal cancer or all-cause mortality; the harms of these screening tests; and the test performance characteristics of these tests for detecting adenomatous polyps, advanced adenomas based on size, or both, as well as colorectal cancer. The USPSTF also commissioned a comparative modeling study to provide information on optimal starting and stopping ages and screening intervals across the different available screening methods. Findings The USPSTF concludes with high certainty that screening for colorectal cancer in average-risk, asymptomatic adults aged 50 to 75 years is of substantial net benefit. Multiple screening strategies are available to choose from, with different levels of evidence to support their effectiveness, as well as unique advantages and limitations, although there are no empirical data to demonstrate that any of the reviewed strategies provide a greater net benefit. Screening for colorectal cancer is a substantially underused preventive health strategy in the United States. Conclusions and Recommendations The USPSTF recommends screening for colorectal cancer starting at age 50 years and continuing until age 75 years (A recommendation). The decision to screen for colorectal cancer in adults aged 76 to 85 years should be an individual one, taking into account the patient’s overall health and prior screening history (C recommendation).

2,100 citations

Journal ArticleDOI
TL;DR: With increasing incidence of CRC at younger ages, there is an urgent need to better identify high-risk individuals younger than 50 years, the age when screening typically starts, and aspirin probably confers chemopreventive benefit against CRC.
Abstract: Globally, colorectal cancer (CRC) is the third most commonly diagnosed malignancy and the second leading cause of cancer death. Arising through three major pathways, including adenoma–carcinoma sequence, serrated pathway and inflammatory pathway, CRC represents an aetiologically heterogeneous disease according to subtyping by tumour anatomical location or global molecular alterations. Genetic factors such as germline MLH1 and APC mutations have an aetiologic role, predisposing individuals to CRC. Yet, the majority of CRC is sporadic and largely attributable to the constellation of modifiable environmental risk factors characterizing westernization (for example, obesity, physical inactivity, poor diets, alcohol drinking and smoking). As such, the burden of CRC is shifting towards low-income and middle-income countries as they become westernized. Furthermore, the rising incidence of CRC at younger ages (before age 50 years) is an emerging trend. This Review provides a comprehensive summary of CRC epidemiology, with emphasis on modifiable lifestyle and nutritional factors, chemoprevention and screening. Overall, the optimal reduction of CRC incidence and mortality will require concerted efforts to reduce modifiable risk factors, to leverage chemoprevention research and to promote population-wide and targeted screening. Colorectal cancer is one of the most common cancers worldwide. This Review provides a comprehensive summary of colorectal cancer epidemiology, with emphasis on modifiable lifestyle and nutritional factors, chemoprevention and screening.

1,138 citations

Journal ArticleDOI
01 Jul 2018-Cancer
TL;DR: The American Cancer Society, the Centers for Disease Control and Prevention (CDC), the National Cancer Institute (NCI), and the North American Association of Central Cancer Registries (NAACCR) collaborate to provide annual updates on cancer occurrence and trends in the United States.
Abstract: Background The American Cancer Society, the Centers for Disease Control and Prevention, the National Cancer Institute, and the North American Association of Central Cancer Registries collaborate to provide annual updates on cancer occurrence and trends in the United States. Methods Data on new cancer diagnoses during 2001 through 2016 were obtained from the Centers for Disease Control and Prevention-funded and National Cancer Institute-funded population-based cancer registry programs and compiled by the North American Association of Central Cancer Registries. Data on cancer deaths during 2001 through 2017 were obtained from the National Center for Health Statistics' National Vital Statistics System. Trends in incidence and death rates for all cancers combined and for the leading cancer types by sex, racial/ethnic group, and age were estimated by joinpoint analysis and characterized by the average annual percent change during the most recent 5 years (2012-2016 for incidence and 2013-2017 for mortality). Results Overall, cancer incidence rates decreased 0.6% on average per year during 2012 through 2016, but trends differed by sex, racial/ethnic group, and cancer type. Among males, cancer incidence rates were stable overall and among non-Hispanic white males but decreased in other racial/ethnic groups; rates increased for 5 of the 17 most common cancers, were stable for 7 cancers (including prostate), and decreased for 5 cancers (including lung and bronchus [lung] and colorectal). Among females, cancer incidence rates increased during 2012 to 2016 in all racial/ethnic groups, increasing on average 0.2% per year; rates increased for 8 of the 18 most common cancers (including breast), were stable for 6 cancers (including colorectal), and decreased for 4 cancers (including lung). Overall, cancer death rates decreased 1.5% on average per year during 2013 to 2017, decreasing 1.8% per year among males and 1.4% per year among females. During 2013 to 2017, cancer death rates decreased for all cancers combined among both males and females in each racial/ethnic group, for 11 of the 19 most common cancers among males (including lung and colorectal), and for 14 of the 20 most common cancers among females (including lung, colorectal, and breast). The largest declines in death rates were observed for melanoma of the skin (decreasing 6.1% per year among males and 6.3% among females) and lung (decreasing 4.8% per year among males and 3.7% among females). Among children younger than 15 years, cancer incidence rates increased an average of 0.8% per year during 2012 to 2016, and cancer death rates decreased an average of 1.4% per year during 2013 to 2017. Among adolescents and young adults aged 15 to 39 years, cancer incidence rates increased an average of 0.9% per year during 2012 to 2016, and cancer death rates decreased an average of 1.0% per year during 2013 to 2017. Conclusions Although overall cancer death rates continue to decline, incidence rates are leveling off among males and are increasing slightly among females. These trends reflect population changes in cancer risk factors, screening test use, diagnostic practices, and treatment advances. Many cancers can be prevented or treated effectively if they are found early. Population-based cancer incidence and mortality data can be used to inform efforts to decrease the cancer burden in the United States and regularly monitor progress toward goals.

1,117 citations

References
More filters
Journal ArticleDOI
TL;DR: The combined cancer death rate dropped continuously from 1991 to 2015 by a total of 26%, translating to approximately 2,378,600 fewer cancer deaths than would have been expected if death rates had remained at their peak.
Abstract: Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data, available through 2014, were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data, available through 2015, were collected by the National Center for Health Statistics. In 2018, 1,735,350 new cancer cases and 609,640 cancer deaths are projected to occur in the United States. Over the past decade of data, the cancer incidence rate (2005-2014) was stable in women and declined by approximately 2% annually in men, while the cancer death rate (2006-2015) declined by about 1.5% annually in both men and women. The combined cancer death rate dropped continuously from 1991 to 2015 by a total of 26%, translating to approximately 2,378,600 fewer cancer deaths than would have been expected if death rates had remained at their peak. Of the 10 leading causes of death, only cancer declined from 2014 to 2015. In 2015, the cancer death rate was 14% higher in non-Hispanic blacks (NHBs) than non-Hispanic whites (NHWs) overall (death rate ratio [DRR], 1.14; 95% confidence interval [95% CI], 1.13-1.15), but the racial disparity was much larger for individuals aged <65 years (DRR, 1.31; 95% CI, 1.29-1.32) compared with those aged ≥65 years (DRR, 1.07; 95% CI, 1.06-1.09) and varied substantially by state. For example, the cancer death rate was lower in NHBs than NHWs in Massachusetts for all ages and in New York for individuals aged ≥65 years, whereas for those aged <65 years, it was 3 times higher in NHBs in the District of Columbia (DRR, 2.89; 95% CI, 2.16-3.91) and about 50% higher in Wisconsin (DRR, 1.78; 95% CI, 1.56-2.02), Kansas (DRR, 1.51; 95% CI, 1.25-1.81), Louisiana (DRR, 1.49; 95% CI, 1.38-1.60), Illinois (DRR, 1.48; 95% CI, 1.39-1.57), and California (DRR, 1.45; 95% CI, 1.38-1.54). Larger racial inequalities in young and middle-aged adults probably partly reflect less access to high-quality health care. CA Cancer J Clin 2018;68:7-30. © 2018 American Cancer Society.

14,011 citations

Journal ArticleDOI
TL;DR: The GRADE process begins with asking an explicit question, including specification of all important outcomes, and provides explicit criteria for rating the quality of evidence that include study design, risk of bias, imprecision, inconsistency, indirectness, and magnitude of effect.

6,093 citations


"Colorectal cancer screening for ave..." refers methods in this paper

  • ...While the primary source of evidence for this guideline used a different rating system for the appraisal of evidence,(26,29) the GDG applied the principles of the Grades of Recommendations, Assessment, Development, and Evaluation (GRADE) and GRADE Evidence-to-Decision (EtD) frameworks in formulating and assigning the strength of recommendations.(36,37) The principal GRADE decision-making criteria are: 1) balance between desirable and undesirable effects—the greater the difference between desirable and undesirable effects, the higher the likelihood that a strong recommendation is warranted, and the narrower the difference, the higher the likelihood that a qualified recommendation is warranted; 2) quality of evidence—the higher the quality of evidence, the higher the likelihood that a strong recommendation is warranted; and 3) values and preferences—the greater the uniformity or certainty in values and preferences, the higher the likelihood that a strong recommendation is warranted....

    [...]

Journal ArticleDOI
TL;DR: Overall CRC incidence in individuals ages ≥50 years declined from 2009 to 2013 in every state except Arkansas, with the decrease exceeding 5% annually in 7 states; however, rectal tumor incidence in those ages 50 to 64 years was stable in most states.
Abstract: Colorectal cancer (CRC) is one of the most common malignancies in the United States. Every 3 years, the American Cancer Society provides an update of CRC incidence, survival, and mortality rates and trends. Incidence data through 2013 were provided by the Surveillance, Epidemiology, and End Results program, the National Program of Cancer Registries, and the North American Association of Central Cancer Registries. Mortality data through 2014 were provided by the National Center for Health Statistics. CRC incidence rates are highest in Alaska Natives and blacks and lowest in Asian/Pacific Islanders, and they are 30% to 40% higher in men than in women. Recent temporal patterns are generally similar by race and sex, but differ by age. Between 2000 and 2013, incidence rates in adults aged ≥50 years declined by 32%, with the drop largest for distal tumors in people aged ≥65 years (incidence rate ratio [IRR], 0.50; 95% confidence interval [95% CI], 0.48-0.52) and smallest for rectal tumors in ages 50 to 64 years (male IRR, 0.91; 95% CI, 0.85-0.96; female IRR, 1.00; 95% CI, 0.93-1.08). Overall CRC incidence in individuals ages ≥50 years declined from 2009 to 2013 in every state except Arkansas, with the decrease exceeding 5% annually in 7 states; however, rectal tumor incidence in those ages 50 to 64 years was stable in most states. Among adults aged <50 years, CRC incidence rates increased by 22% from 2000 to 2013, driven solely by tumors in the distal colon (IRR, 1.24; 95% CI, 1.13-1.35) and rectum (IRR, 1.22; 95% CI, 1.13-1.31). Similar to incidence patterns, CRC death rates decreased by 34% among individuals aged ≥50 years during 2000 through 2014, but increased by 13% in those aged <50 years. Progress against CRC can be accelerated by increasing initiation of screening at age 50 years (average risk) or earlier (eg, family history of CRC/advanced adenomas) and eliminating disparities in high-quality treatment. In addition, research is needed to elucidate causes for increasing CRC in young adults. CA Cancer J Clin 2017. © 2017 American Cancer Society. CA Cancer J Clin 2017;67:177-193. © 2017 American Cancer Society.

3,220 citations


"Colorectal cancer screening for ave..." refers background in this paper

  • ...A third stool test is the mt-sDNA test, which combines an immunochemical assay for hemoglobin, and assays for aberrantly methylated BMP3, NDRG, and NDRG4, mutated K-ras, and b-Actin in cells exfoliated from colonic neoplasms.103 Currently, there is only one mt-sDNA test marketed in the United States.104 (See the online Supporting Information for a more detailed discussion of each test.)...

    [...]

  • ...Colorectal cancer (CRC) is the fourth most commonly diagnosed cancer among adults in the United States.1 Over 140,000 Americans are expected to be diagnosed with CRC in 2018....

    [...]

  • ...CA CANCER J CLIN 2018;00:00–00 VOLUME 00 _ NUMBER 00 _ MONTH 2018 19 Perforation, mostly due to insufflation, is very rare and is estimated to occur in less than 2 per 10,000 procedures.29 As with any imaging test, radiation exposure commonly is raised as a potential harm, although new screening protocols have resulted in substantial dose reductions, with average doses ranging from <1 to 2 millisieverts (mSv) in recent reports,139,140 which is less than the 3-mSv-per-year estimate of average background radiation exposure in the United States.141 This low level of exposure every 5 years has been judged to be a negligible harm when considered in the context of the potential LYGs from avoiding a premature CRC death.142 The detection of incidental extracolonic findings with CTC screening is an area of concern....

    [...]

  • ...CRC disease burden varies across racial groups, with the highest incidence and mortality rates in blacks, American Indians, and Alaska Natives.(2) Temporal trends in CRC incidence and mortality among adults aged 55 years and older have shown a decline for several decades that accelerated around 2000, particularly among adults aged 65 years and older....

    [...]

  • ...CRC incidence among blacks, including those younger than 50 years, has historically been higher than that among whites, Hispanics, and Asian Americans.(2) However, while incidence rates in whites younger than 50 years have risen, incidence rates for blacks younger than 50 years have remained generally stable, resulting in comparable contemporary incidence between the 2 groups (Fig....

    [...]

Book
23 Mar 2006
TL;DR: Health risks from exposure to low levels of ionizing radiation : BEIR VII Phase 2 , Health risks from Exposure to low Levels of Ionizing radiation: BEIR VIII Phase 2, شاپور اهواز.
Abstract: Health risks from exposure to low levels of ionizing radiation : BEIR VII Phase 2 , Health risks from exposure to low levels of ionizing radiation : BEIR VII Phase 2 , کتابخانه دیجیتال جندی شاپور اهواز

2,416 citations

Journal ArticleDOI
21 Jun 2016-JAMA
TL;DR: It is concluded with high certainty that screening for colorectal cancer in average-risk, asymptomatic adults aged 50 to 75 years is of substantial net benefit.
Abstract: Importance Colorectal cancer is the second leading cause of cancer death in the United States. In 2016, an estimated 134 000 persons will be diagnosed with the disease, and about 49 000 will die from it. Colorectal cancer is most frequently diagnosed among adults aged 65 to 74 years; the median age at death from colorectal cancer is 73 years. Objective To update the 2008 US Preventive Services Task Force (USPSTF) recommendation on screening for colorectal cancer. Evidence Review The USPSTF reviewed the evidence on the effectiveness of screening with colonoscopy, flexible sigmoidoscopy, computed tomography colonography, the guaiac-based fecal occult blood test, the fecal immunochemical test, the multitargeted stool DNA test, and the methylated SEPT9 DNA test in reducing the incidence of and mortality from colorectal cancer or all-cause mortality; the harms of these screening tests; and the test performance characteristics of these tests for detecting adenomatous polyps, advanced adenomas based on size, or both, as well as colorectal cancer. The USPSTF also commissioned a comparative modeling study to provide information on optimal starting and stopping ages and screening intervals across the different available screening methods. Findings The USPSTF concludes with high certainty that screening for colorectal cancer in average-risk, asymptomatic adults aged 50 to 75 years is of substantial net benefit. Multiple screening strategies are available to choose from, with different levels of evidence to support their effectiveness, as well as unique advantages and limitations, although there are no empirical data to demonstrate that any of the reviewed strategies provide a greater net benefit. Screening for colorectal cancer is a substantially underused preventive health strategy in the United States. Conclusions and Recommendations The USPSTF recommends screening for colorectal cancer starting at age 50 years and continuing until age 75 years (A recommendation). The decision to screen for colorectal cancer in adults aged 76 to 85 years should be an individual one, taking into account the patient’s overall health and prior screening history (C recommendation).

2,100 citations


"Colorectal cancer screening for ave..." refers methods in this paper

  • ...The USPSTF updated their CRC screening guideline in 2016.(44) CRC screening from ages 50 through 75 years with any of 7 screening strategies was given an “A” recommendation (comparable to a strong recommendation using GRADE criteria), which largely overlaps with the 2018 ACS recommendations....

    [...]

  • ...age and a 15-year screening interval, and citing the lack of empirical evidence for screening younger populations and a 15-year screening interval.(44) The CISNET modeling analyses used for the 2016...

    [...]

Related Papers (5)