scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Combination of Fenton processes and biotreatment for wastewater treatment and soil remediation

01 Jan 2017-Science of The Total Environment (Elsevier)-Vol. 574, pp 1599-1610
TL;DR: This review shows a critical overview of recent researches combining Fenton processes (as pre-treatment or post-treatment) with bioremediation for treatment of wastewater or polluted soil and concluded that the combined treatment can be regarded as a novel and competitive technology.
About: This article is published in Science of The Total Environment.The article was published on 2017-01-01. It has received 283 citations till now. The article focuses on the topics: Wastewater & Environmental remediation.
Citations
More filters
Journal ArticleDOI
TL;DR: The fundamentals, advantages and disadvantages of single and coupled Fenton optimization processes for organic wastewater treatment were reviewed, and some important operation parameters on the degradation efficiency of organic pollutants was studied to provide guidance for the optimization of operation parameters.

598 citations

Journal ArticleDOI
01 Aug 2019-Carbon
TL;DR: A review of the latest developments in the area of graphitic carbon nitride (g-C3N4)-based metal-free photocatalysts for H2 generation can be found in this article.

579 citations

Journal ArticleDOI
TL;DR: This critical review briefly describes the synthesis routes for COF powders and thin films and the most fascinating and significant applications of COFs in sensing fields including explosive sensing, humidity sensing, pH detection, biosensing, gas sensing, metal ion sensing, and other substance sensing.
Abstract: As a newly emerging kind of porous material, covalent organic frameworks (COFs) have drawn much attention because of their fascinating structural features (e.g., divinable structure, adjustable porosity and total organic backbone). Since the seminal work of Yaghi and co-workers reported in 2005, the COF materials have shown superior potential in diverse applications, such as gas storage, adsorption, optoelectronics, catalysis, etc. Recently, COF materials have shown a new trend in sensing fields. This critical review briefly describes the synthesis routes for COF powders and thin films. What's more, the most fascinating and significant applications of COFs in sensing fields including explosive sensing, humidity sensing, pH detection, biosensing, gas sensing, metal ion sensing, and other substance sensing are summarized and highlighted. Finally, the major challenges and future trends of COFs with respect to their preparation and sensing applications are discussed.

510 citations

Journal ArticleDOI
TL;DR: In this article, a novel iodine vacancy-rich BiOI/Ag@AgI/VI-BOI Z-scheme heterojunction photocatalyst was successfully constructed.

486 citations

Journal ArticleDOI
TL;DR: In this paper, a metal-free carbon doping-carbon nitride (BCM-C 3 N 4 ) nanocomposite was synthesized by introducing barbituric acid and cyanuric acids during the polymerization of melamine.
Abstract: Many organic and inorganic compounds have been developed as visible light driven photocatalysts for environment and energy application. In this work, a metal-free carbon doping–carbon nitride (BCM-C 3 N 4 ) nanocomposite was synthesized by introducing barbituric acid and cyanuric acid during the polymerization of melamine. The BCM-C 3 N 4 was characterized by structure, porosity, optical performance, and photoelectrochemical properties. Results demonstrated that BCM-C 3 N 4 sample exhibited higher surface area, lower fluorescence intensity, better photocurrent signals and more efficient charge transfer in comparison to pure C 3 N 4 . The BCM-C 3 N 4 exhibits excellent photocatalytic degradation ability of sulfamethazine (SMZ) under visible light irradiation. Much superior photocatalytic activity and high pollutant mineralization rate was achieved by BCM-C 3 N 4 , where it was 5 times than that of pristine C 3 N 4 . The effect of initial SMZ concentrations on photocatalyst was also investigated. Additionally, the trapping experiments and electron spin resonance tests demonstrated that the main active species, such as O 2 − and h + , could be produced under light irradiation. This work might provide an effective approach to the design of low-cost and highly efficient photocatalysis degradation systems for water treatment.

458 citations

References
More filters
Journal ArticleDOI
20 Mar 2008-Nature
TL;DR: Some of the science and technology being developed to improve the disinfection and decontamination of water, as well as efforts to increase water supplies through the safe re-use of wastewater and efficient desalination of sea and brackish water are highlighted.
Abstract: One of the most pervasive problems afflicting people throughout the world is inadequate access to clean water and sanitation. Problems with water are expected to grow worse in the coming decades, with water scarcity occurring globally, even in regions currently considered water-rich. Addressing these problems calls out for a tremendous amount of research to be conducted to identify robust new methods of purifying water at lower cost and with less energy, while at the same time minimizing the use of chemicals and impact on the environment. Here we highlight some of the science and technology being developed to improve the disinfection and decontamination of water, as well as efforts to increase water supplies through the safe re-use of wastewater and efficient desalination of sea and brackish water.

6,967 citations

Journal ArticleDOI
TL;DR: The biodegradation of PAHs has been observed under both aerobic and anaerobic conditions and the rate can be enhanced by physical/chemical pretreatment of contaminated soil.

2,482 citations

Journal ArticleDOI
TL;DR: This paper presents a literature review of the various Fenton reagent reactions which constitute the overall kinetic scheme with all possible side reactions and discusses the possibility of improving sludge dewaterability using Fenton's reagent.

2,424 citations

Journal ArticleDOI
TL;DR: Interaction of VeA with at least four methyltransferase proteins indicates a molecular hub function for VeA that questions: Is there a VeA supercomplex or is VeA part of a highly dynamic cellular control network with many different partners?
Abstract: Fungal secondary metabolism has become an important research topic with great biomedical and biotechnological value. In the postgenomic era, understanding the diversity and the molecular control of secondary metabolites are two challenging tasks addressed by the research community. Discovery of the LaeA methyltransferase 10 years ago opened up a new horizon on the control of secondary metabolite research when it was found that expression of many secondary metabolite gene clusters is controlled by LaeA. While the molecular function of LaeA remains an enigma, discovery of the velvet family proteins as interaction partners further extended the role of the LaeA beyond secondary metabolism. The heterotrimeric VelB-VeA-LaeA complex plays important roles in development, sporulation, secondary metabolism and pathogenicity. Recently, three other methyltransferases have been found to associate with the velvet complex, the LaeA-like methyltransferase F (LlmF) and the methyltransferase heterodimers VipC-VapB. Interaction of VeA with at least four methyltransferase proteins indicates a molecular hub function for VeA that questions: Is there a VeA supercomplex or is VeA part of a highly dynamic cellular control network with many different partners?

2,234 citations

Journal ArticleDOI
TL;DR: The main conclusions arrived at from the overall assessment of the literature are that more work needs to be done on degradation kinetics and reactor modeling of the combined process, and also dynamics of the initial attack on primary contaminants and intermediate species generation.

2,046 citations