scispace - formally typeset
Search or ask a question
Book ChapterDOI

Combined Analysis of Image Processing Transforms with Location Averaging Technique for Facial and Ear Recognition System

01 Jan 2018-pp 67-77
TL;DR: In this proposed work, a blooming new technique called location averaging technique is combined with few image processing transforms, i.e., wherever possible, with FFT, DCT, and DWT for human face and ear recognition.
Abstract: In the current biometric human recognition scenario, novel ideas are evolving to solve the errors in facial and ear recognition system. In this proposed work, a blooming new technique called location averaging technique is combined with few image processing transforms, i.e., location averaging technique is combined with FFT, DCT, and DWT for human face and ear recognition. Location averaging technique is a feature extraction/reduction process; it transforms the whole size of an image into a single column vector. It helps to accumulate more number of images for recognition system. Location averaged FFT, location averaged DCT, and location averaged DWT are the three methods proposed for face and ear recognition system. The standard face and ear database images are used for analyzing the accuracy, runtime, and mismatching. The maximum accuracy value of about 99% is achieved in shortest run time with less mismatching.
Citations
More filters
Journal ArticleDOI
TL;DR: To obtain the high-performance ratio novel techniques are combined and created a new face recognition system that combines spatial domain techniques like Gray averaging technique, Location averaging technique and Intensity’s position estimation technique united with frequency domain technique like Discrete Cosine Transform.
Abstract: Face recognition is an effective tool in the biometric human recognition system. In this competitive world, several techniques and systems are emerging to satisfy the needs of the face recognition system’s performance. To obtain the high-performance ratio novel techniques are combined and created a new face recognition system. Spatial domain techniques like Gray averaging technique, Location averaging technique and Intensity’s position estimation technique are united with frequency domain technique like Discrete Cosine Transform. Intensity’s position estimation is a novel feature extraction and classification technique proposed in this work. Three standard face databases are tested using this system. Accuracy and runtime are major parameters used to validate the obtained results. The maximum accuracy rate of about 86% is obtained.
References
More filters
Journal ArticleDOI
TL;DR: Good generalized these methods and gave elegant algorithms for which one class of applications is the calculation of Fourier series, applicable to certain problems in which one must multiply an N-vector by an N X N matrix which can be factored into m sparse matrices.
Abstract: An efficient method for the calculation of the interactions of a 2' factorial ex- periment was introduced by Yates and is widely known by his name. The generaliza- tion to 3' was given by Box et al. (1). Good (2) generalized these methods and gave elegant algorithms for which one class of applications is the calculation of Fourier series. In their full generality, Good's methods are applicable to certain problems in which one must multiply an N-vector by an N X N matrix which can be factored into m sparse matrices, where m is proportional to log N. This results inma procedure requiring a number of operations proportional to N log N rather than N2. These methods are applied here to the calculation of complex Fourier series. They are useful in situations where the number of data points is, or can be chosen to be, a highly composite number. The algorithm is here derived and presented in a rather different form. Attention is given to the choice of N. It is also shown how special advantage can be obtained in the use of a binary computer with N = 2' and how the entire calculation can be performed within the array of N data storage locations used for the given Fourier coefficients. Consider the problem of calculating the complex Fourier series N-1 (1) X(j) = EA(k)-Wjk, j = 0 1, * ,N- 1, k=0

11,795 citations

Journal ArticleDOI
TL;DR: A face recognition algorithm which is insensitive to large variation in lighting direction and facial expression is developed, based on Fisher's linear discriminant and produces well separated classes in a low-dimensional subspace, even under severe variations in lighting and facial expressions.
Abstract: We develop a face recognition algorithm which is insensitive to large variation in lighting direction and facial expression. Taking a pattern classification approach, we consider each pixel in an image as a coordinate in a high-dimensional space. We take advantage of the observation that the images of a particular face, under varying illumination but fixed pose, lie in a 3D linear subspace of the high dimensional image space-if the face is a Lambertian surface without shadowing. However, since faces are not truly Lambertian surfaces and do indeed produce self-shadowing, images will deviate from this linear subspace. Rather than explicitly modeling this deviation, we linearly project the image into a subspace in a manner which discounts those regions of the face with large deviation. Our projection method is based on Fisher's linear discriminant and produces well separated classes in a low-dimensional subspace, even under severe variation in lighting and facial expressions. The eigenface technique, another method based on linearly projecting the image space to a low dimensional subspace, has similar computational requirements. Yet, extensive experimental results demonstrate that the proposed "Fisherface" method has error rates that are lower than those of the eigenface technique for tests on the Harvard and Yale face databases.

11,674 citations

Journal ArticleDOI
TL;DR: In this article, a discrete cosine transform (DCT) is defined and an algorithm to compute it using the fast Fourier transform is developed, which can be used in the area of digital processing for the purposes of pattern recognition and Wiener filtering.
Abstract: A discrete cosine transform (DCT) is defined and an algorithm to compute it using the fast Fourier transform is developed. It is shown that the discrete cosine transform can be used in the area of digital processing for the purposes of pattern recognition and Wiener filtering. Its performance is compared with that of a class of orthogonal transforms and is found to compare closely to that of the Karhunen-Loeve transform, which is known to be optimal. The performances of the Karhunen-Loeve and discrete cosine transforms are also found to compare closely with respect to the rate-distortion criterion.

4,481 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that when the training data set is small, PCA can outperform LDA and, also, that PCA is less sensitive to different training data sets.
Abstract: In the context of the appearance-based paradigm for object recognition, it is generally believed that algorithms based on LDA (linear discriminant analysis) are superior to those based on PCA (principal components analysis). In this communication, we show that this is not always the case. We present our case first by using intuitively plausible arguments and, then, by showing actual results on a face database. Our overall conclusion is that when the training data set is small, PCA can outperform LDA and, also, that PCA is less sensitive to different training data sets.

3,102 citations

Book
01 Jan 2008
TL;DR: The central concept of sparsity is explained and applied to signal compression, noise reduction, and inverse problems, while coverage is given to sparse representations in redundant dictionaries, super-resolution and compressive sensing applications.
Abstract: Mallat's book is the undisputed reference in this field - it is the only one that covers the essential material in such breadth and depth. - Laurent Demanet, Stanford University The new edition of this classic book gives all the major concepts, techniques and applications of sparse representation, reflecting the key role the subject plays in today's signal processing. The book clearly presents the standard representations with Fourier, wavelet and time-frequency transforms, and the construction of orthogonal bases with fast algorithms. The central concept of sparsity is explained and applied to signal compression, noise reduction, and inverse problems, while coverage is given to sparse representations in redundant dictionaries, super-resolution and compressive sensing applications. Features: * Balances presentation of the mathematics with applications to signal processing * Algorithms and numerical examples are implemented in WaveLab, a MATLAB toolbox * Companion website for instructors and selected solutions and code available for students New in this edition * Sparse signal representations in dictionaries * Compressive sensing, super-resolution and source separation * Geometric image processing with curvelets and bandlets * Wavelets for computer graphics with lifting on surfaces * Time-frequency audio processing and denoising * Image compression with JPEG-2000 * New and updated exercises A Wavelet Tour of Signal Processing: The Sparse Way, third edition, is an invaluable resource for researchers and R&D engineers wishing to apply the theory in fields such as image processing, video processing and compression, bio-sensing, medical imaging, machine vision and communications engineering. Stephane Mallat is Professor in Applied Mathematics at cole Polytechnique, Paris, France. From 1986 to 1996 he was a Professor at the Courant Institute of Mathematical Sciences at New York University, and between 2001 and 2007, he co-founded and became CEO of an image processing semiconductor company. Companion website: A Numerical Tour of Signal Processing * Includes all the latest developments since the book was published in 1999, including its application to JPEG 2000 and MPEG-4 * Algorithms and numerical examples are implemented in Wavelab, a MATLAB toolbox * Balances presentation of the mathematics with applications to signal processing

2,600 citations