scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Combustion properties of biomass

TL;DR: In this paper, a review of the properties of biomass relevant to combustion is briefly reviewed and the compositions of biomass among fuel types are variable, especially with respect to inorganic constituents important to the critical problems of fouling and slagging.
About: This article is published in Fuel Processing Technology.The article was published on 1998-03-01. It has received 1764 citations till now. The article focuses on the topics: Combustion & Heat of combustion.
Citations
More filters
Journal ArticleDOI
01 May 2010-Fuel
TL;DR: An extended overview of the chemical composition of biomass was conducted in this article, where reference peer-reviewed data for chemical composition was used to describe the biomass system, including traditional and complete proximate, ultimate and ash analyses.

1,792 citations

Journal ArticleDOI
TL;DR: It is shown that NCS can provide over one-third of the cost-effective climate mitigation needed between now and 2030 to stabilize warming to below 2 °C.
Abstract: Better stewardship of land is needed to achieve the Paris Climate Agreement goal of holding warming to below 2 °C; however, confusion persists about the specific set of land stewardship options available and their mitigation potential. To address this, we identify and quantify "natural climate solutions" (NCS): 20 conservation, restoration, and improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We find that the maximum potential of NCS-when constrained by food security, fiber security, and biodiversity conservation-is 23.8 petagrams of CO2 equivalent (PgCO2e) y-1 (95% CI 20.3-37.4). This is ≥30% higher than prior estimates, which did not include the full range of options and safeguards considered here. About half of this maximum (11.3 PgCO2e y-1) represents cost-effective climate mitigation, assuming the social cost of CO2 pollution is ≥100 USD MgCO2e-1 by 2030. Natural climate solutions can provide 37% of cost-effective CO2 mitigation needed through 2030 for a >66% chance of holding warming to below 2 °C. One-third of this cost-effective NCS mitigation can be delivered at or below 10 USD MgCO2-1 Most NCS actions-if effectively implemented-also offer water filtration, flood buffering, soil health, biodiversity habitat, and enhanced climate resilience. Work remains to better constrain uncertainty of NCS mitigation estimates. Nevertheless, existing knowledge reported here provides a robust basis for immediate global action to improve ecosystem stewardship as a major solution to climate change.

1,508 citations

Journal ArticleDOI
TL;DR: In this article, the state of the art in modeling chemical and physical processes of wood and biomass pyrolysis is reported, and the main achievements of numerical simulations are discussed.

1,495 citations

Journal ArticleDOI
TL;DR: In this paper, several aspects which are associated with burning biomass in boilers have been investigated such as composition of biomass, estimating the higher heating value of biomass and comparison between biomass and other fuels.
Abstract: Currently, fossil fuels such as oil, coal and natural gas represent the prime energy sources in the world. However, it is anticipated that these sources of energy will deplete within the next 40–50 years. Moreover, the expected environmental damages such as the global warming, acid rain and urban smog due to the production of emissions from these sources have tempted the world to try to reduce carbon emissions by 80% and shift towards utilizing a variety of renewable energy resources (RES) which are less environmentally harmful such as solar, wind, biomass etc. in a sustainable way. Biomass is one of the earliest sources of energy with very specific properties. In this review, several aspects which are associated with burning biomass in boilers have been investigated such as composition of biomass, estimating the higher heating value of biomass, comparison between biomass and other fuels, combustion of biomass, co-firing of biomass and coal, impacts of biomass, economic and social analysis of biomass, transportation of biomass, densification of biomass, problems of biomass and future of biomass. It has been found that utilizing biomass in boilers offers many economical, social and environmental benefits such as financial net saving, conservation of fossil fuel resources, job opportunities creation and CO 2 and NO x emissions reduction. However, care should be taken to other environmental impacts of biomass such as land and water resources, soil erosion, loss of biodiversity and deforestation. Fouling, marketing, low heating value, storage and collections and handling are all associated problems when burning biomass in boilers. The future of biomass in boilers depends upon the development of the markets for fossil fuels and on policy decisions regarding the biomass market.

1,293 citations

Journal ArticleDOI
TL;DR: The main problem with bioethanol production is the availability of raw materials for the production as mentioned in this paper, which can highly affect the production costs of the bio-ethanol, as the price of the raw materials is highly volatile.

1,265 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the mechanisms and rate parameters for the gas-phase reactions of nitrogen compounds that are applicable to combustion-generated air pollution are discussed and illustrated by comparison of results from detailed kinetics calculations with experimental data.

2,843 citations

Book
01 Jan 1986
TL;DR: The Gaussian Plume Equation and Air Quality Models Atmospheric Removal Processes and Residence Times Air Pollution Statistics Acid Rain Index (AIRI) as mentioned in this paper, which measures the amount of acid rain in the air.
Abstract: Air Pollutants Effects of Air Pollution Sources of Pollutants in Combustion Processes Gas-Phase Atmospheric Chemistry Aqueous-Phase Atmospheric Chemistry Mass Transfer Aspects of Atmospheric Chemistry Properties of Aerosols Dynamics of Single Aerosol Particles Thermodynamics of Aerosols and Nucleation Theory Dynamics of Aerosol Population Air Pollution Meteorology Micrometeorology Atmospheric Diffusion Theories The Gaussian Plume Equation The Atmospheric Diffusion Equation and Air Quality Models Atmospheric Removal Processes and Residence Times Air Pollution Statistics Acid Rain Index.

2,708 citations

Journal ArticleDOI
TL;DR: Alkali Deposits Investigation (ADI) as mentioned in this paper was a collaborative effort to understand the causes of unmanageable ash deposits in biomass-fired electric power boilers.

654 citations

Journal ArticleDOI
TL;DR: In this paper, the elemental and molecular composition of mineral matter in five wood types and two barks was investigated as a function of temperature using thermal gravimetric analysis, differential thermal analysis, inductively coupled plasma emission spectroscopy, and X-ray diffraction.
Abstract: The elemental and molecular composition of mineral matter in five wood types and two barks was investigated as a function of temperature using thermal gravimetric analysis, differential thermal analysis, inductively coupled plasma emission spectroscopy, and X-ray diffraction. Low temperature ash was prepared at 500°C, and samples were heated in a tube furnace at temperature increments to 1400°C. The dissociation of carbonates and the volatilization of potassium, sulfur, and trace amounts of copper and boron were investigated as a function of temperature. Overall mass loss of the mineral ash ranged from 23–48% depending on wood type. The mass of K, S, B, Na, and Cu decreased, whereas Mg, P, Mn, Al, Fe, and Si did not change with temperature relative to Ca which was assumed to be constant. Sintering of the ash occurred, but fusion of the ash did not occur. In the 600°C ash CaCO 3 and K 2 Ca(CO 3 ) 2 were identified, whereas in 1300°C ash CaO and MgO were the main compounds. The implications for ash deposition in furnaces is discussed.

484 citations

Journal ArticleDOI
TL;DR: In this article, a mechanistic approach to describing the fate of inorganic material in solid fuels with a particular focus on the mechanisms of ash deposition is presented. But this approach has the potential of embracing a large range of fuel variations, combustor types, and operating conditions without the need of developing extensive databases or testing procedures for each new situation.
Abstract: The variability in both inorganic and organic properties of biomass fuels is large. This paper discusses combustion-driven transformations and deposition of inorganic material found in solid fuels, with a focus on the formation of deposits and their properties. A small number of mechanisms is used to describe both the transformations and deposition. The discussion below outlines this mechanistic approach to describing the fate of inorganic material in solid fuels with a particular focus on the mechanisms of ash deposition. This mechanistic approach has the potential of embracing a large range of fuel variations, combustor types, and operating conditions without the need of developing extensive databases or testing procedures for each new situation. The approach has been successfully demonstrated for coal combustion, and examples from coal experiments will be used as illustrations. The same methodology and logic can be applied to biomass combustion. A comparison of coal and biomass is briefly presented, including the chemical structures and the modes of occurrence of inorganic material in the fuels. The major mechanisms of ash deposition during combustion of coal and biomass are related to the types of inorganic material in the fuel and the combustion conditions. The effects of fuel (biomass or coal) characteristics and combustor operating conditions on ash deposit properties such as tenacity, emissivity, thermal conductivity, morphology, strength, chemical composition, viscosity, and rate of growth are discussed. A mechanistic model describing ash deposition in solid-fuel combustors is presented and used to postulate characteristics of ash deposits formed in biomass combustors.

397 citations