scispace - formally typeset
Proceedings ArticleDOI

Comet assay based detection of SPION induced DNA damage in human lymphocytes

Reads0
Chats0
TLDR
The results show that SPION induced genotoxicity is completely dependent on its physicochemical properties and Regulation of these properties by using different coatings could decrease toxicity.
Abstract
Superparamagnetic iron oxide nanoparticle (SPION) coated with suitable biocompatible substances have uses in various biomedical fields, particularly in magnetic resonance imaging, tissue engineering, hyperthermia and drug delivery. In this study we have used two newly formulated SPIONs. SPIONs were coated with biodegradable polymer polylactide co glycolide (PLGA) using of the two types of surfactants-didodecyldimethylammoniumbromide (DMAB) and ±-tocopheryl glycol succinate (TPGS) for surface modification, to extend the application potential in the field of nanomedicine. The present study focuses on the evaluation of genotoxicity if any of the two types of formulated SPIONs on human lymphocyte. Human lymphocytes were exposed to SPIONs at 11.2µg/ml concentrations of Fe in each group for 3 h at 37°C. Single-dose toxicity was tested in isolated lymphocytes using MTT assay. Uncoated SPIONs were found highly toxic while the coated ones showed significantly less cell death. In vitro genotoxicity of the formulated SPIONs showed significantly lower %tail DNA than uncoated SPIONs as detected by comet assay in lymphocytes. The results show that SPION induced genotoxicity is completely dependent on its physicochemical properties. Regulation of these properties by using different coatings could decrease toxicity. Type of surface modification primarily governed the amount of DNA damage as detected by Comet assay. The results also indicate that the coatings on the SPION were biocompatible and suitable for in vivo explorations while the free SPION were found completely unsuitable for in vivo administration.

read more

References
More filters
Journal ArticleDOI

A simple technique for quantitation of low levels of DNA damage in individual cells

TL;DR: Human lymphocytes were exposed to X-irradiation or treated with H2O2 and the extent of DNA migration was measured using a single-cell microgel electrophoresis technique under alkaline conditions and this technique appears to be sensitive and useful for detecting damage and repair in single cells.
Journal ArticleDOI

Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles

TL;DR: Results of older bio-kinetic studies with NSPs and newer epidemiologic and toxicologic studies with airborne ultrafine particles can be viewed as the basis for the expanding field of nanotoxicology, which can be defined as safety evaluation of engineered nanostructures and nanodevices.
Journal ArticleDOI

Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications

TL;DR: This review discusses the synthetic chemistry, fluid stabilization and surface modification of superparamagnetic iron oxide nanoparticles, as well as their use for above biomedical applications.
Journal ArticleDOI

Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing.

TL;DR: The expert panel reached a consensus that the optimal version of the Comet assay for identifying agents with genotoxic activity was the alkaline (pH > 13) versions of the assay developed by Singh et al.
Journal ArticleDOI

Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION)

TL;DR: Current studies are reviewed and discussed how SPION, with or without different surface coating, may cause cellular perturbations including modulation of actin cytoskeleton, alteration in gene expression profiles, disturbance in iron homeostasis and altered cellular responses such as activation of signalling pathways and impairment of cell cycle regulation.
Related Papers (5)