scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Comet assay based detection of SPION induced DNA damage in human lymphocytes

01 Jan 2016-pp 91-94
TL;DR: The results show that SPION induced genotoxicity is completely dependent on its physicochemical properties and Regulation of these properties by using different coatings could decrease toxicity.
Abstract: Superparamagnetic iron oxide nanoparticle (SPION) coated with suitable biocompatible substances have uses in various biomedical fields, particularly in magnetic resonance imaging, tissue engineering, hyperthermia and drug delivery. In this study we have used two newly formulated SPIONs. SPIONs were coated with biodegradable polymer polylactide co glycolide (PLGA) using of the two types of surfactants-didodecyldimethylammoniumbromide (DMAB) and ±-tocopheryl glycol succinate (TPGS) for surface modification, to extend the application potential in the field of nanomedicine. The present study focuses on the evaluation of genotoxicity if any of the two types of formulated SPIONs on human lymphocyte. Human lymphocytes were exposed to SPIONs at 11.2µg/ml concentrations of Fe in each group for 3 h at 37°C. Single-dose toxicity was tested in isolated lymphocytes using MTT assay. Uncoated SPIONs were found highly toxic while the coated ones showed significantly less cell death. In vitro genotoxicity of the formulated SPIONs showed significantly lower %tail DNA than uncoated SPIONs as detected by comet assay in lymphocytes. The results show that SPION induced genotoxicity is completely dependent on its physicochemical properties. Regulation of these properties by using different coatings could decrease toxicity. Type of surface modification primarily governed the amount of DNA damage as detected by Comet assay. The results also indicate that the coatings on the SPION were biocompatible and suitable for in vivo explorations while the free SPION were found completely unsuitable for in vivo administration.
References
More filters
Journal ArticleDOI
TL;DR: The following definitions for a nanoparticle (NP) and a nano-object will be used.
Abstract: Nanotechnology has become a key word of public interest, since people realized the social and economic power of nanotechnology development. Nanotechnology has already become part of our daily life, and it will have an as yet unknown technological impact because it concerns all aspects of human life from novel building materials to electronics, cosmetics, pharmaceutics, and medicine.1 In recent years, engineered nanoparticles started to become the most important components in nanotechnology. The InternationalOrganization for Standardization (ISO) has provided specific definitions in their recent document entitled “Nanotechnologies—Terminology and definitions for nanoobjects—Nanoparticle, nanofibre and nanoplate”. As the basis of this review, the following definitions for a nanoparticle (NP) and a nano-object will be used.

527 citations

Journal Article
TL;DR: It is argued that none of the confounding factors are unequivocally positive in the majority of the studies and recommended that age, gender, and smoking status be used as criteria for the selection of populations and that data on exercise, diet, and recent infections be registered before blood sampling.
Abstract: Within the last decade, the comet assay has been used with increasing popularity to investigate the level of DNA damage in terms of strand breaks and alkaline labile sites in biomonitoring studies. The assay is easily performed on WBCs and has been included in a wide range of biomonitoring studies of occupational exposures encompassing styrene, vinyl chloride, 1,3-butadiene, pesticides, hair dyes, antineoplastic agents, organic solvents, sewage and waste materials, wood dust, and ionizing radiation. Eleven of the occupational studies were positive, whereas seven were negative. Notably, the negative studies appeared to have less power than the positive studies. Also, there were poor dose-response relationships in many of the biomonitoring studies. Many factors have been reported to produce effects by the comet assay, e.g., age, air pollution exposure, diet, exercise, gender, infection, residential radon exposure, smoking, and season. Until now, the use of the comet assay has been hampered by the uncertainty of the influence of confounding factors. We argue that none of the confounding factors are unequivocally positive in the majority of the studies. We recommend that age, gender, and smoking status be used as criteria for the selection of populations and that data on exercise, diet, and recent infections be registered before blood sampling. Samples from exposed and unexposed populations should be collected at the same time to avoid seasonal variation. In general, the comet assay is considered a suitable and fast test for DNA-damaging potential in biomonitoring studies.

398 citations

Journal ArticleDOI
TL;DR: Next-generation magnetic nanoparticles are expected to be truly multifunctional, incorporating therapeutic functionalities and further enhancing an already diverse repertoire of capabilities.

253 citations

Journal ArticleDOI
TL;DR: Biodegradable polymeric vesicles as a nanocarrier system for multimodal bio-imaging and anticancer drug delivery and Histological studies showed that the presence of PLGA vesicle in organs was shifted from the lungs to the liver and spleen over time.

189 citations

Journal ArticleDOI
TL;DR: It is suggested that iron oxide nanoparticles induce ROS formation, which disrupts the actin cytoskeleton and alters endothelial cell morphology and mechanics, and if ROS formation is decreased using ROS inhibitors, higher nanoparticle concentrations might be used with greater efficacy and diminished side effects.
Abstract: Superparamagnetic iron oxide nanoparticles are used in various medical applications including magnetic resonance imaging, magnetic hyperthermia, and targeted drug and gene delivery. When used in vivo, these nanoparticles interact with endothelial cells lining all blood vessels, therefore it is crucial to understand endothelial cell functional changes and toxicity upon nanoparticle exposure. We incubated porcine aortic endothelial cells with varying concentrations of bare iron oxide nanoparticles (20-40 nm), and measured cellular reactive oxygen species (ROS) formation, morphology and cytoskeletal organization, death, and elastic modulus. Intracellular ROS increased more than 800% after 3 h of nanoparticle exposure (0.5 mg mL(-1)). Endothelial cells elongated to more than twice their initial length by 12 h, and actin stress fibers formed within the cells. This change in the actin cytoskeleton increased cell elastic modulus by 50%. When ROS formation was blocked using scavengers, initial cell morphology and the actin cytoskeleton remained intact, and cell viability increased. These studies suggest that iron oxide nanoparticles induce ROS formation, which disrupts the actin cytoskeleton and alters endothelial cell morphology and mechanics. If ROS formation is decreased using ROS inhibitors, either as a component of the nanoparticle coating or by systemic administration, higher nanoparticle concentrations might be used with greater efficacy and diminished side effects.

170 citations

Related Papers (5)