scispace - formally typeset
Search or ask a question
Book

Communication Networks An Optimization Control And Stochastic Networks Perspective

TL;DR: Taking a top-down approach to network protocol design, the authors begin with the deterministic model and progress to more sophisticated models, illustrating the practical engineering applications of each topic.
Abstract: Provides a modern mathematical approach to the design of communication networks for graduate students, blending control, optimization, and stochastic network theories. A broad range of performance analysis tools are discussed, including important advanced topics that have been made accessible to students for the first time. Taking a top-down approach to network protocol design, the authors begin with the deterministic model and progress to more sophisticated models. Network algorithms and protocols are tied closely to the theory, illustrating the practical engineering applications of each topic. The background behind the mathematical analyses is given before the formal proofs and is supported by worked examples, enabling students to understand the big picture before going into the detailed theory. End-of-chapter problems cover a range of difficulties, with complex problems broken into several parts, and hints to many problems are provided to guide students. Full solutions are available online for instructors.
Citations
More filters
Journal ArticleDOI
TL;DR: A novel distributed dynamic spectrum access algorithm based on deep multi-user reinforcement leaning is developed for accessing the spectrum that maximizes a certain network utility in a distributed manner without online coordination or message exchanges between users.
Abstract: We consider the problem of dynamic spectrum access for network utility maximization in multichannel wireless networks. The shared bandwidth is divided into $K$ orthogonal channels. In the beginning of each time slot, each user selects a channel and transmits a packet with a certain transmission probability. After each time slot, each user that has transmitted a packet receives a local observation indicating whether its packet was successfully delivered or not (i.e., ACK signal). The objective is a multi-user strategy for accessing the spectrum that maximizes a certain network utility in a distributed manner without online coordination or message exchanges between users. Obtaining an optimal solution for the spectrum access problem is computationally expensive, in general, due to the large-state space and partial observability of the states. To tackle this problem, we develop a novel distributed dynamic spectrum access algorithm based on deep multi-user reinforcement leaning. Specifically, at each time slot, each user maps its current state to the spectrum access actions based on a trained deep-Q network used to maximize the objective function. Game theoretic analysis of the system dynamics is developed for establishing design principles for the implementation of the algorithm. The experimental results demonstrate the strong performance of the algorithm.

326 citations


Cites background from "Communication Networks An Optimizat..."

  • ...We focus here on the unified system-wide αfair utility function which is given by [54]:...

    [...]

Proceedings ArticleDOI
16 Apr 2018
TL;DR: In this article, a joint eMBB and ultra-low-latency (URLLC) scheduler is proposed to maximize the utility for eMBBs while satisfying instantaneous URLLC demands.
Abstract: Emerging 5G systems will need to efficiently support both broadband traffic (eMBB) and ultra-low-latency (URLLC) traffic. In these systems, time is divided into slots which are further sub-divided into minislots. From a scheduling perspective, eMBB resource allocations occur at slot boundaries, whereas to reduce latency URLLC traffic is pre-emptively overlapped at the minislot timescale, resulting in selective superposition/puncturing of eMBB allocations. This approach enables minimal URLLC latency at a potential rate loss to eMBB traffic. We study joint eMBB and URLLC schedulers for such systems, with the dual objectives of maximizing utility for eMBB traffic while satisfying instantaneous URLLC demands. For a linear rate loss model (loss to eMBB is linear in the amount of superposition/puncturing), we derive an optimal joint scheduler. Somewhat counter-intuitively, our results show that our dual objectives can be met by an iterative gradient scheduler for eMBB traffic that anticipates the expected loss from URLLC traffic, along with an URLLC demand scheduler that is oblivious to eMBB channel states, utility functions and allocations decisions of the eMBB scheduler. Next we consider a more general class of (convex) loss models and study optimal online joint eMBB/URLLC schedulers within the broad class of channel state dependent but time-homogeneous policies. We validate the characteristics and benefits of our schedulers via simulation.

246 citations

Journal ArticleDOI
Weina Wang1, Kai Zhu1, Lei Ying1, Jian Tan2, Li Zhang2 
TL;DR: A new queueing architecture is presented and a map task scheduling algorithm constituted by the Join the Shortest Queue policy together with the MaxWeight policy is proposed that is heavy-traffic optimal, i.e., it asymptotically minimizes the number of backlogged tasks as the arrival rate vector approaches the boundary of the capacity region.
Abstract: MapReduce/Hadoop framework has been widely used to process large-scale datasets on computing clusters. Scheduling map tasks with data locality consideration is crucial to the performance of MapReduce. Many works have been devoted to increasing data locality for better efficiency. However, to the best of our knowledge, fundamental limits of MapReduce computing clusters with data locality, including the capacity region and theoretical bounds on the delay performance, have not been well studied. In this paper, we address these problems from a stochastic network perspective. Our focus is to strike the right balance between data locality and load balancing to simultaneously maximize throughput and minimize delay. We present a new queueing architecture and propose a map task scheduling algorithm constituted by the Join the Shortest Queue policy together with the MaxWeight policy. We identify an outer bound on the capacity region, and then prove that the proposed algorithm can stabilize any arrival rate vector strictly within this outer bound. It shows that the outer bound coincides with the actual capacity region, and the proposed algorithm is throughput-optimal. Furthermore, we study the number of backlogged tasks under the proposed algorithm, which is directly related to the delay performance based on Little's law. We prove that the proposed algorithm is heavy-traffic optimal, i.e., it asymptotically minimizes the number of back-logged tasks as the arrival rate vector approaches the boundary of the capacity region. Therefore, the proposed algorithm is also delay-optimal in the heavy-traffic regime. The proofs in this paper deal with random processing times with heterogeneous parameters and nonpreemptive task execution, which differentiate our work from many existing works on MaxWeight-type algorithms, so the proof techniques themselves for the stability analysis and the heavy-traffic analysis are also novel contributions.

148 citations


Cites methods from "Communication Networks An Optimizat..."

  • ...By an extension of the Foster–Lyapunov theorem [24], it suffices to find a Lyapunov function and a positive integer for each arrival rate vector such that the time-slot Lyapunov drift is bounded within a finite subset of the state space and negative outside the subset....

    [...]

Proceedings ArticleDOI
10 Apr 2016
TL;DR: This paper proposes utility-driven caching, where each content is associate with each content a utility, which is a function of the corresponding content hit probability, and develops online algorithms that can be used by service providers to implement various caching policies based on arbitrary utility functions.
Abstract: In any caching system, the admission and eviction policies determine which contents are added and removed from a cache when a miss occurs. Usually, these policies are devised so as to mitigate staleness and increase the hit probability. Nonetheless, the utility of having a high hit probability can vary across contents. This occurs, for instance, when service level agreements must be met, or if certain contents are more difficult to obtain than others. In this paper, we propose utility-driven caching, where we associate with each content a utility, which is a function of the corresponding content hit probability. We formulate optimization problems where the objectives are to maximize the sum of utilities over all contents. These problems differ according to the stringency of the cache capacity constraint. Our framework enables us to reverse engineer classical replacement policies such as LRU and FIFO, by computing the utility functions that they maximize. We also develop online algorithms that can be used by service providers to implement various caching policies based on arbitrary utility functions.

142 citations


Cites background or methods from "Communication Networks An Optimizat..."

  • ...Network Utility Maximization Utility functions have been widely used in the modeling and control of computer networks, from stability analysis of queues to the study of fairness in network resource allocation; see [11], [12] and references therein....

    [...]

  • ...This family of utility functions unifies different notions of fairness in resource allocation [11]....

    [...]

Posted Content
TL;DR: In this paper, the authors considered the dynamics of a linear stochastic approximation algorithm driven by Markovian noise, and derived finite-time bounds on the moments of the error, i.e., deviation of the output of the algorithm from the equilibrium point of an associated ODE.
Abstract: We consider the dynamics of a linear stochastic approximation algorithm driven by Markovian noise, and derive finite-time bounds on the moments of the error, i.e., deviation of the output of the algorithm from the equilibrium point of an associated ordinary differential equation (ODE). We obtain finite-time bounds on the mean-square error in the case of constant step-size algorithms by considering the drift of an appropriately chosen Lyapunov function. The Lyapunov function can be interpreted either in terms of Stein's method to obtain bounds on steady-state performance or in terms of Lyapunov stability theory for linear ODEs. We also provide a comprehensive treatment of the moments of the square of the 2-norm of the approximation error. Our analysis yields the following results: (i) for a given step-size, we show that the lower-order moments can be made small as a function of the step-size and can be upper-bounded by the moments of a Gaussian random variable; (ii) we show that the higher-order moments beyond a threshold may be infinite in steady-state; and (iii) we characterize the number of samples needed for the finite-time bounds to be of the same order as the steady-state bounds. As a by-product of our analysis, we also solve the open problem of obtaining finite-time bounds for the performance of temporal difference learning algorithms with linear function approximation and a constant step-size, without requiring a projection step or an i.i.d. noise assumption.

135 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, a simple but nevertheless extremely accurate, analytical model to compute the 802.11 DCF throughput, in the assumption of finite number of terminals and ideal channel conditions, is presented.
Abstract: The IEEE has standardized the 802.11 protocol for wireless local area networks. The primary medium access control (MAC) technique of 802.11 is called the distributed coordination function (DCF). The DCF is a carrier sense multiple access with collision avoidance (CSMA/CA) scheme with binary slotted exponential backoff. This paper provides a simple, but nevertheless extremely accurate, analytical model to compute the 802.11 DCF throughput, in the assumption of finite number of terminals and ideal channel conditions. The proposed analysis applies to both the packet transmission schemes employed by DCF, namely, the basic access and the RTS/CTS access mechanisms. In addition, it also applies to a combination of the two schemes, in which packets longer than a given threshold are transmitted according to the RTS/CTS mechanism. By means of the proposed model, we provide an extensive throughput performance evaluation of both access mechanisms of the 802.11 protocol.

8,072 citations

Journal ArticleDOI
TL;DR: In this paper, a new treatment is presented of a classical economic problem, one which occurs in many forms, as bargaining, bilateral monopoly, etc It may also be regarded as a nonzero-sum two-person game in which a few general assumptions are made concerning the behavior of a single individual and of a group of two individuals in certain economic environments.
Abstract: A new treatment is presented of a classical economic problem, one which occurs in many forms, as bargaining, bilateral monopoly, etc It may also be regarded as a nonzero-sum two-person game In this treatment a few general assumptions are made concerning the behavior of a single individual and of a group of two individuals in certain economic environments From these, the solution (in the sense of this paper) of classical problem may be obtained In the terms of game theory, values are found for the game См также: Two-person cooperative games, автор - Джо Нэш

7,600 citations

Journal ArticleDOI
TL;DR: In this article, a measure of risk aversion in the small, the risk premium or insurance premium for an arbitrary risk, and a natural concept of decreasing risk aversion are discussed and related to one another.
Abstract: This paper concerns utility functions for money. A measure of risk aversion in the small, the risk premium or insurance premium for an arbitrary risk, and a natural concept of decreasing risk aversion are discussed and related to one another. Risks are also considered as a proportion of total assets.

5,207 citations

Journal ArticleDOI
01 Jan 1997
TL;DR: This paper addresses the issues of charging, rate control and routing for a communication network carrying elastic traffic, such as an ATM network offering an available bit rate service, from which max-min fairness of rates emerges as a limiting special case.
Abstract: This paper addresses the issues of charging, rate control and routing for a communication network carrying elastic traffic, such as an ATM network offering an available bit rate service. A model is described from which max-min fairness of rates emerges as a limiting special case; more generally, the charges users are prepared to pay influence their allocated rates. In the preferred version of the model, a user chooses the charge per unit time that the user will pay; thereafter the user's rate is determined by the network according to a proportional fairness criterion applied to the rate per unit charge. A system optimum is achieved when users' choices of charges and the network's choice of allocated rates are in equilibrium.

3,067 citations

Journal ArticleDOI
01 Jun 2002
TL;DR: This work shows that true beamforming gains can be achieved when there are sufficient users, even though very limited channel feedback is needed, and proposes the use of multiple transmit antennas to induce large and fast channel fluctuations so that multiuser diversity can still be exploited.
Abstract: Multiuser diversity is a form of diversity inherent in a wireless network, provided by independent time-varying channels across the different users. The diversity benefit is exploited by tracking the channel fluctuations of the users and scheduling transmissions to users when their instantaneous channel quality is near the peak. The diversity gain increases with the dynamic range of the fluctuations and is thus limited in environments with little scattering and/or slow fading. In such environments, we propose the use of multiple transmit antennas to induce large and fast channel fluctuations so that multiuser diversity can still be exploited. The scheme can be interpreted as opportunistic beamforming and we show that true beamforming gains can be achieved when there are sufficient users, even though very limited channel feedback is needed. Furthermore, in a cellular system, the scheme plays an additional role of opportunistic nulling of the interference created on users of adjacent cells. We discuss the design implications of implementing. this scheme in a complete wireless system.

3,041 citations