scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Compact heat exchangers

01 Jun 1960-Journal of Applied Mechanics (American Society of Mechanical Engineers)-Vol. 27, Iss: 2, pp 377-377
TL;DR: The third edition of the second edition as discussed by the authors was published in 1964 and contains basic test data for eleven new surface configurations, including some of the very compact ceramic matrices, in both the English and the Systeme International (SI) system of units.
Abstract: This third edition is an update of the second edition published in 1964. New data and more modern theoretical solutions for flow in the simple geometries are included, although this edition does not differ radically from the second edition. It contains basic test data for eleven new surface configurations, including some of the very compact ceramic matrices. Al dimensions are given in both the English and the Systeme International (SI) system of units.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a model is developed to describe the drag, turbulence and diffusion for flow through emergent vegetation, which for the first time captures the relevant underlying physics, and covers the natural range of vegetation density and stem Reynolds' numbers.
Abstract: Aquatic plants convert mean kinetic energy into turbulent kinetic energy at the scale of the plant stems and branches. This energy transfer, linked to wake generation, affects vegetative drag and turbulence intensity. Drawing on this physical link, a model is developed to describe the drag, turbulence and diffusion for flow through emergent vegetation which for the first time captures the relevant underlying physics, and covers the natural range of vegetation density and stem Reynolds' numbers. The model is supported by laboratory and field observations. In addition, this work extends the cylinder-based model for vegetative resistance by including the dependence of the drag coefficient, CD, on the stem population density, and introduces the importance of mechanical diffusion in vegetated flows.

1,199 citations

Book ChapterDOI
TL;DR: In this paper, the authors discuss the heat transfer and the hydraulic resistance of single tubes, and the banks of tubes of various arrangements in flows of gases and viscous liquids, and highlight the influence of the physical properties of fluids on heat transfer.
Abstract: Publisher Summary This chapter discusses the heat transfer and the hydraulic resistance of single tubes, and the banks of tubes of various arrangements in flows of gases and viscous liquids. The focus is on the important problems of the heat transfer and the hydraulic resistance of tubes, in particular with the heat transfer of single tubes, banks of tubes, and systems of tubes in crossflow. The chapter also highlights the influence of the physical properties of fluids on heat transfer. Extensive experimental data will be analyzed and will include investigations of banks of tubes of various arrangements, and a single tube in crossflow in the range of Prandtl number from 0.7 to 500 and that of Reynolds number from 1 to 2xl0 6 .

1,181 citations

Journal ArticleDOI
TL;DR: In this paper, a broad range of Performance Evaluation Criteria (PEC) applicable to single-phase flow in tubes is presented and detailed procedures are outlined to calculate the performance improvement and to select the optimal surface geometry.

802 citations

Journal ArticleDOI
TL;DR: In this paper, open-cell metal foams with an average cell diameter of 2.3 mm were manufactured from 6101-T6 aluminum alloy and were compressed and fashioned into compact heat exchangers.

681 citations

Journal ArticleDOI
01 Aug 1980-Energy
TL;DR: In this article, the second law of thermodynamics is used as a basis for evaluating the irreversibility associated with simple heat transfer processes, such as heat augmentation techniques, heat exchanger design, and thermal insulation systems.

612 citations