scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Comparative analysis of machine learning algorithms for prediction of smart grid stability

TL;DR: In this article, state-of-the-art machine learning algorithms, namely Support Vector Machines (SVM), KNN, Logistic Regression, Naive Bayes, Neural Networks, and Decision Tree classifier, have been deployed for predicting the stability of the smart grid.
Abstract: The global demand for electricity has visualized high growth with the rapid growth in population and economy. It thus becomes necessary to efficiently distribute electricity to households and industries in order to reduce power loss. Smart Grids (SG) have the potential to reduce such power losses during power distribution. Machine learning and artificial intelligence techniques have been successfully implemented on SGs to achieve enhanced accuracy in customer demand prediction. There exists a dire need to analyze and evaluate the various machine learning algorithms, thereby identify the most suitable one to be applied to SGs. In the present work, several state-of-the-art machine learning algorithms, namely Support Vector Machines (SVM), K-Nearest Neighbor (KNN), Logistic Regression, Naive Bayes, Neural Networks, and Decision Tree classifier, have been deployed for predicting the stability of the SG. The SG dataset used in the study is publicly available collected from UC Irvine (UCI) machine learning repository. The experimentation results highlighted the superiority of the Decision Tree classification algorithm, which outperformed the other state of the art algorithms yielding 100% precision, 99.9% recall, 100% F1 score, and 99.96% accuracy.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , the authors present a state-of-the-art review of recent developments in the edge of things (BEoT) technology and discover its great opportunities in many application domains.
Abstract: In recent years, blockchain networks have attracted significant attention in many research areas beyond cryptocurrency, one of them being the Edge of Things (EoT) that is enabled by the combination of edge computing and the Internet of Things (IoT). In this context, blockchain networks enabled with unique features, such as decentralization, immutability, and traceability, have the potential to reshape and transform the conventional EoT systems with higher security levels. Particularly, the convergence of blockchain and EoT leads to a new paradigm, called BEoT that has been regarded as a promising enabler for future services and applications. In this article, we present a state-of-the-art review of recent developments in the BEoT technology and discover its great opportunities in many application domains. We start our survey by providing an updated introduction to blockchain and EoT along with their recent advances. Subsequently, we discuss the use of BEoT in a wide range of industrial applications, from smart transportation, smart city, smart healthcare to smart home, and smart grid. Security challenges in the BEoT paradigm are also discussed and analyzed, with some key services, such as access authentication, data privacy preservation, attack detection, and trust management. Finally, some key research challenges and future directions are also highlighted to instigate further research in this promising area.

56 citations

Journal ArticleDOI
TL;DR: In this article , the authors present a comprehensive survey of the start-of-the-art contributions pertinent to incentive mechanisms in smart grids, which can be used in smart grid to optimize the power distribution during peak times and also reduce carbon emissions.
Abstract: Smart grids (SG) are electricity grids that communicate with each other, provide reliable information, and enable administrators to operate energy supplies across the country, ensuring optimized reliability and efficiency. The smart grid contains sensors that measure and transmit data to adjust the flow of electricity automatically based on supply/demand, and thus, responding to problems becomes quicker and easier. This also plays a crucial role in controlling carbon emissions, by avoiding energy losses during peak load hours and ensuring optimal energy management. The scope of big data analytics in smart grids is huge, as they collect information from raw data and derive intelligent information from the same. However, these benefits of the smart grid are dependent on the active and voluntary participation of the consumers in real-time. Consumers need to be motivated and conscious to avail themselves of the achievable benefits. Incentivizing the appropriate actor is an absolute necessity to encourage prosumers to generate renewable energy sources (RES) and motivate industries to establish plants that support sustainable and green-energy-based processes or products. The current study emphasizes similar aspects and presents a comprehensive survey of the start-of-the-art contributions pertinent to incentive mechanisms in smart grids, which can be used in smart grids to optimize the power distribution during peak times and also reduce carbon emissions. The various technologies, such as game theory, blockchain, and artificial intelligence, used in implementing incentive mechanisms in smart grids are discussed, followed by different incentive projects being implemented across the globe. The lessons learnt, challenges faced in such implementations, and open issues such as data quality, privacy, security, and pricing related to incentive mechanisms in SG are identified to guide the future scope of research in this sector.

17 citations

Journal ArticleDOI
02 Feb 2023-Energies
TL;DR: In this paper , the authors conducted a systematic review of state-of-the-art load forecasting techniques, including traditional techniques, clustering-based techniques, AI-based and time series-based methods, and provided an analysis of their performance and results.
Abstract: The growing success of smart grids (SGs) is driving increased interest in load forecasting (LF) as accurate predictions of energy demand are crucial for ensuring the reliability, stability, and efficiency of SGs. LF techniques aid SGs in making decisions related to power operation and planning upgrades, and can help provide efficient and reliable power services at fair prices. Advances in artificial intelligence (AI), specifically in machine learning (ML) and deep learning (DL), have also played a significant role in improving the precision of demand forecasting. It is important to evaluate different LF techniques to identify the most accurate and appropriate one for use in SGs. This paper conducts a systematic review of state-of-the-art forecasting techniques, including traditional techniques, clustering-based techniques, AI-based techniques, and time series-based techniques, and provides an analysis of their performance and results. The aim of this paper is to determine which LF technique is most suitable for specific applications in SGs. The findings indicate that AI-based LF techniques, using ML and neural network (NN) models, have shown the best forecast performance compared to other methods, achieving higher overall root mean squared (RMS) and mean absolute percentage error (MAPE) values.

13 citations

Journal ArticleDOI
TL;DR: In this article , an Artificial Hummingbird (AHB) algorithm-based feature selection model for the smart grid environment with optimal DL enabled stability prediction (AHbFS-ODLSP) is presented.

8 citations

Journal ArticleDOI
TL;DR: This model can better predict frequency fluctuations in decentralized power grids and the volatile nature of renewable energy resources resulting in better utilization and may contribute to the stability of a decentralized power grid for better distribution and management of electricity.
Abstract: A decentralized power grid is a modern system that implements demand response without requiring major infrastructure changes. In decentralization, the consumers regulate their electricity demand autonomously based on the grid frequency. With cheap equipment (i.e., smart meters), the grid frequency can be easily measured anywhere. Electrical grids need to be stable to balance electricity supply and demand to ensure economically and dynamically viable grid operation. The volumes of electricity consumed/produced (p) by each grid participant, cost-sensitivity (g), and grid participants’ response times (tau) to changing grid conditions affect the stability of the grid. Renewable energy resources are volatile on varying time scales. Due to the volatile nature of these renewable energy resources, there are more frequent fluctuations in decentralized grids integrating renewable energy resources. The decentralized grid is designed by linking real-time electricity rates to the grid frequency over a few seconds to provide demand-side control. In this study, a model has been proposed to predict the stability of a decentralized power grid. The simulated data obtained from the online machine learning repository has been employed. Data normalization has been employed to reduce the biased behavior among attributes. Various data level resampling techniques have been used to address the issue of data imbalance. The results showed that a balanced dataset outperformed an imbalanced dataset regarding classifiers’ performance. It has also been observed that oversampling techniques proved better than undersampling techniques and imbalanced datasets. Overall, the XGBoost algorithm outperformed all other machine learning algorithms based on performance. XGBoost has been given an accuracy of 94.7%, but while combining XGBoost with random oversampling, its accuracy prediction has been improved to 96.8%. This model can better predict frequency fluctuations in decentralized power grids and the volatile nature of renewable energy resources resulting in better utilization. This prediction may contribute to the stability of a decentralized power grid for better distribution and management of electricity.

8 citations

References
More filters
Journal ArticleDOI
TL;DR: The main objective of this paper is to provide a contemporary look at the current state of the art in smart grid communications as well as to discuss the still-open research issues in this field.
Abstract: For 100 years, there has been no change in the basic structure of the electrical power grid. Experiences have shown that the hierarchical, centrally controlled grid of the 20th Century is ill-suited to the needs of the 21st Century. To address the challenges of the existing power grid, the new concept of smart grid has emerged. The smart grid can be considered as a modern electric power grid infrastructure for enhanced efficiency and reliability through automated control, high-power converters, modern communications infrastructure, sensing and metering technologies, and modern energy management techniques based on the optimization of demand, energy and network availability, and so on. While current power systems are based on a solid information and communication infrastructure, the new smart grid needs a different and much more complex one, as its dimension is much larger. This paper addresses critical issues on smart grid technologies primarily in terms of information and communication technology (ICT) issues and opportunities. The main objective of this paper is to provide a contemporary look at the current state of the art in smart grid communications as well as to discuss the still-open research issues in this field. It is expected that this paper will provide a better understanding of the technologies, potential advantages and research challenges of the smart grid and provoke interest among the research community to further explore this promising research area.

2,331 citations

Journal ArticleDOI
TL;DR: This paper introduces support vector machines (SVM), the latest neural network algorithm, to wind speed prediction and compares their performance with the multilayer perceptron (MLP) neural networks.

676 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a comprehensive and systematic literature review of Artificial Intelligence based short-term load forecasting techniques and provide the major objective of this study is to review, identify, evaluate and analyze the performance of artificial Intelligence based load forecast models and research gaps.
Abstract: Electrical load forecasting plays a vital role in order to achieve the concept of next generation power system such as smart grid, efficient energy management and better power system planning. As a result, high forecast accuracy is required for multiple time horizons that are associated with regulation, dispatching, scheduling and unit commitment of power grid. Artificial Intelligence (AI) based techniques are being developed and deployed worldwide in on Varity of applications, because of its superior capability to handle the complex input and output relationship. This paper provides the comprehensive and systematic literature review of Artificial Intelligence based short term load forecasting techniques. The major objective of this study is to review, identify, evaluate and analyze the performance of Artificial Intelligence (AI) based load forecast models and research gaps. The accuracy of ANN based forecast model is found to be dependent on number of parameters such as forecast model architecture, input combination, activation functions and training algorithm of the network and other exogenous variables affecting on forecast model inputs. Published literature presented in this paper show the potential of AI techniques for effective load forecasting in order to achieve the concept of smart grid and buildings.

673 citations

Journal ArticleDOI
22 Jun 2018-Energies
TL;DR: A LSTM model using only optimally selected time lagged features captured all the characteristics of complex time series and showed decreased Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) for medium to long range forecasting for a wider metropolitan area.
Abstract: Background: With the development of smart grids, accurate electric load forecasting has become increasingly important as it can help power companies in better load scheduling and reduce excessive electricity production. However, developing and selecting accurate time series models is a challenging task as this requires training several different models for selecting the best amongst them along with substantial feature engineering to derive informative features and finding optimal time lags, a commonly used input features for time series models. Methods: Our approach uses machine learning and a long short-term memory (LSTM)-based neural network with various configurations to construct forecasting models for short to medium term aggregate load forecasting. The research solves above mentioned problems by training several linear and non-linear machine learning algorithms and picking the best as baseline, choosing best features using wrapper and embedded feature selection methods and finally using genetic algorithm (GA) to find optimal time lags and number of layers for LSTM model predictive performance optimization. Results: Using France metropolitan’s electricity consumption data as a case study, obtained results show that LSTM based model has shown high accuracy then machine learning model that is optimized with hyperparameter tuning. Using the best features, optimal lags, layers and training various LSTM configurations further improved forecasting accuracy. Conclusions: A LSTM model using only optimally selected time lagged features captured all the characteristics of complex time series and showed decreased Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) for medium to long range forecasting for a wider metropolitan area.

511 citations

Journal ArticleDOI
TL;DR: An important guiding source for researchers and engineers studying the smart grid, which helps transmission and distribution system operators to follow the right path as they are transforming their classical grids to smart grids.

472 citations