scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Comparison of Dopamine and Norepinephrine in the Treatment of Shock

TL;DR: Although there was no significant difference in the rate of death between patients with shock who were treated with dopamine as the first-line vasopressor agent and those who were treating with norepinephrine, the use of dopamine was associated with a greater number of adverse events.
Abstract: BACKGROUND Both dopamine and norepinephrine are recommended as first-line vasopressor agents in the treatment of shock. There is a continuing controversy about whether one agent is superior to the other. METHODS In this multicenter, randomized trial, we assigned patients with shock to receive either dopamine or norepinephrine as first-line vasopressor therapy to restore and maintain blood pressure. When blood pressure could not be maintained with a dose of 20 μg per kilogram of body weight per minute for dopamine or a dose of 0.19 μg per kilogram per minute for norepinephrine, open-label norepinephrine, epinephrine, or vasopressin could be added. The primary outcome was the rate of death at 28 days after randomization; secondary end points included the number of days without need for organ support and the occurrence of adverse events. RESULTS The trial included 1679 patients, of whom 858 were assigned to dopamine and 821 to norepinephrine. The baseline characteristics of the groups were similar. There was no significant between-group difference in the rate of death at 28 days (52.5% in the dopamine group and 48.5% in the norepinephrine group; odds ratio with dopamine, 1.17; 95% confidence interval, 0.97 to 1.42; P = 0.10). However, there were more arrhythmic events among the patients treated with dopamine than among those treated with norepinephrine (207 events [24.1%] vs. 102 events [12.4%], P<0.001). A subgroup analysis showed that dopamine, as compared with norepinephrine, was associated with an increased rate of death at 28 days among the 280 patients with cardiogenic shock but not among the 1044 patients with septic shock or the 263 with hypovolemic shock (P = 0.03 for cardiogenic shock, P = 0.19 for septic shock, and P = 0.84 for hypovolemic shock, in Kaplan–Meier analyses). CONCLUSIONS Although there was no significant difference in the rate of death between patients with shock who were treated with dopamine as the first-line vasopressor agent and those who were treated with norepinephrine, the use of dopamine was associated with a greater number of adverse events. (ClinicalTrials.gov number, NCT00314704.)

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Authors/Task Force Members: Piotr Ponikowski* (Chairperson) (Poland), Adriaan A. Voors* (Co-Chair person) (The Netherlands), Stefan D. Anker (Germany), Héctor Bueno (Spain), John G. F. Cleland (UK), Andrew J. S. Coats (UK)

13,400 citations


Cites background from "Comparison of Dopamine and Norepine..."

  • ...A subgroup analysis suggested that norepinephrine would have fewer side effects and lower mortality.(558) Epinephrine (adrenaline) should be restricted to patients with persistent hypotension despite adequate cardiac filling pressures and the use of other vasoactive agents, as well as for resuscitation protocols....

    [...]

Journal ArticleDOI
TL;DR: An update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008 is provided.
Abstract: Objective:To provide an update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008.Design:A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at ke

9,137 citations

Journal ArticleDOI
TL;DR: The once-in-a-lifetime treatment with Abciximab Intracoronary for acute coronary syndrome and a second dose intravenously for atrial fibrillation is recommended for adults with high blood pressure.
Abstract: ACE : angiotensin-converting enzyme ACS : acute coronary syndrome ADP : adenosine diphosphate AF : atrial fibrillation AMI : acute myocardial infarction AV : atrioventricular AIDA-4 : Abciximab Intracoronary vs. intravenously Drug Application APACHE II : Acute Physiology Aand Chronic

7,519 citations


Cites background from "Comparison of Dopamine and Norepine..."

  • ...Dopamine was associated with higher mortality in the cardiogenic shock subgroup and more adverse events—mainly arrhythmic events—for the overall cohort.(300) Therefore, when blood pres-...

    [...]

Journal ArticleDOI
TL;DR: ACCF/AHAIAI: angiotensin-converting enzyme inhibitor as discussed by the authors, angio-catabolizing enzyme inhibitor inhibitor inhibitor (ACS inhibitor) is a drug that is used to prevent atrial fibrillation.
Abstract: ACC/AHA : American College of Cardiology/American Heart Association ACCF/AHA : American College of Cardiology Foundation/American Heart Association ACE : angiotensin-converting enzyme ACEI : angiotensin-converting enzyme inhibitor ACS : acute coronary syndrome AF : atrial fibrillation

7,489 citations

Journal ArticleDOI
TL;DR: Authors/Task Force Members: Piotr Ponikowski* (Chairperson) (Poland), Adriaan A. Voors* (Co-Chair person) (The Netherlands), Stefan D. Anker (Germany), Héctor Bueno (Spain), John G. F. Cleland (UK), Andrew J. S. Coats (UK)
Abstract: ACC/AHA : American College of Cardiology/American Heart Association ACCF/AHA : American College of Cardiology Foundation/American Heart Association ACE : angiotensin-converting enzyme ACEI : angiotensin-converting enzyme inhibitor ACS : acute coronary syndrome AF : atrial fibrillation

6,757 citations


Cites background from "Comparison of Dopamine and Norepine..."

  • ...A subgroup analysis suggested that norepinephrine would have fewer side effects and lower mortality.(558) Epinephrine (adrenaline) should be restricted to patients with persistent hypotension despite adequate cardiac filling pressures and the use of other vasoactive agents, as well as for resuscitation protocols....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: The form and validation results of APACHE II, a severity of disease classification system that uses a point score based upon initial values of 12 routine physiologic measurements, age, and previous health status, are presented.
Abstract: This paper presents the form and validation results of APACHE II, a severity of disease classification system. APACHE II uses a point score based upon initial values of 12 routine physiologic measurements, age, and previous health status to provide a general measure of severity of disease. An increasing score (range 0 to 71) was closely correlated with the subsequent risk of hospital death for 5815 intensive care admissions from 13 hospitals. This relationship was also found for many common diseases. When APACHE II scores are combined with an accurate description of disease, they can prognostically stratify acutely ill patients and assist investigators comparing the success of new or differing forms of therapy. This scoring index can be used to evaluate the use of hospital resources and compare the efficacy of intensive care in different hospitals or over time.

14,583 citations

Journal ArticleDOI
TL;DR: The ESICM developed a so-called sepsis-related organ failure assessment (SOFA) score to describe quantitatively and as objectively as possible the degree of organ dysfunction/failure over time in groups of patients or even in individual patients.
Abstract: Multiple organ failure (MOF) is a major cause of morbidity and mortali ty in the critically ill patient. Emerging in the 1970s, the concept of MOF was linked to modern developments in intensive care medicine [1]. Although an uncontrolled infection can lead to MOF [2], such a phenomenon is not always found. A number of mediators and the persistence of tissue hypoxia have been incriminated in the development of MOF [3]. The gut has been cited as a possible \"moto r \" of MOF [4]. Nevertheless, our knowledge regarding the pathophysiology of MOF remains limited. Furthermore, the development of new therapeutic interventions aiming at a reduction of the incidence and severity of organ failure calls for a better definition of the severity of organ dysfunction/failure to quantify the severity of illness. Accordingly, it is important to set some simple but objective criteria to define the degree of organ dysfunction/failure. The evolution of our knowledge of organ dysfunction/failure led us to establish several principles: 1. Organ dysfunction/failure is a process rather than an event. Hence, it should be seen as a continuum and should not be described simply as \"present\" or \"absent~' Hence, the assessment should be based on a scale. 2. The time factor is fundamental for several reasons: (a) Development and similarly resolution of organ failure may take some time. Patients dying early may not have time to develop organ dysfunction/failure. (b) The time course of organ dysfunction/failure can be mult imodal during a complex clinical course, what is sometimes referred to as a \"multiple-hit\" scenario. (c) Time evaluation allows a greater understanding of the disease process as a natural process or under the influence of therapeutic interventions. The collection of data on a daily basis seems adequate. 3. The evaluation of organ dysfunction/failure should be based on a limited number of simple but objective variables that are easily and routinely measured in every institution. The collection of this information should not impose any intervention beyond what is routinely performed in every ICU. The variables used should as much as possible be independent of therapy, since therapeutic management may vary from one institution to another and even from one patient to another (Table 1). Until recently, none of the existing systems describing organ failure met these criteria, since they were based on categorial definitions or described organ failure as present or absent [5-7] . The ESICM organized a consensus meeting in Paris in October 1994 to create a so-called sepsis-related organ failure assessment (SOFA) score, to describe quantitatively and as objectively as possible the degree of organ dysfunction/failure over time in groups of patients or even in individual patients (Fig. 1). There are two major applications of such a SOFA score: 1. To improve our Understanding of the natural history of organ dysfunction/failure and the interrelation between the failure of the various organs.

8,538 citations

Journal ArticleDOI
TL;DR: Although considerable improvement has occurred in the process of care for patients with ST-elevation myocardial infarction (STEMI), room for improvement exists as discussed by the authors, and the purpose of the present guideline is to focus on the numerous advances in the diagnosis and management of patients
Abstract: Although considerable improvement has occurred in the process of care for patients with ST-elevation myocardial infarction (STEMI), room for improvement exists.[1–3][1][][2][][3] The purpose of the present guideline is to focus on the numerous advances in the diagnosis and management of patients

8,352 citations

Journal ArticleDOI
TL;DR: The Centers for Disease Control (CDC) developed a new set of definitions for surveillance of nosocomial infections as mentioned in this paper, which combine specific clinical findings with results of laboratory and other tests that include recent advances in diagnostic technology.

5,297 citations

Related Papers (5)
Trending Questions (1)
Does dopamine administration in shock influence outcome?

The paper states that there was no significant difference in the rate of death between patients with shock who were treated with dopamine and those who were treated with norepinephrine.