scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Comparison of Oil Spill Classifications Using Fully and Compact Polarimetric SAR Images

16 Feb 2017-Applied Sciences (Multidisciplinary Digital Publishing Institute)-Vol. 7, Iss: 2, pp 193
TL;DR: In this article, a comparison between several algorithms for oil spill classifications using fully and compact polarimetric satellite synthetic aperture radar (SAR) images is presented, where dimension reduction algorithms, including principle component analysis (PCA) and the local linear embedding (LLE) algorithm, are employed to learn low dimensional and distinctive information from quad-polarimetric SAR features.
Abstract: In this paper, we present a comparison between several algorithms for oil spill classifications using fully and compact polarimetric SAR images. Oil spill is considered as one of the most significant sources of marine pollution. As a major difficulty of SAR-based oil spill detection algorithms is the classification between mineral and biogenic oil, we focus on quantitatively analyzing and comparing fully and compact polarimetric satellite synthetic aperture radar (SAR) modes to detect hydrocarbon slicks over the sea surface, discriminating them from weak-damping surfactants, such as biogenic slicks. The experiment was conducted on quad-pol SAR data acquired during the Norwegian oil-on-water experiment in 2011. A universal procedure was used to extract the features from quad-, dual- and compact polarimetric SAR modes to rank different polarimetric SAR modes and common supervised classifiers. Among all the dual- and compact polarimetric SAR modes, the π/2 mode has the best performance. The best supervised classifiers vary and depended on whether sufficient polarimetric information can be obtained in each polarimetric mode. We also analyzed the influence of the number of polarimetric parameters considered as inputs for the supervised classifiers, onto the detection/discrimination performance. We discovered that a feature set with four features is sufficient for most polarimetric feature-based oil spill classifications. Moreover, dimension reduction algorithms, including principle component analysis (PCA) and the local linear embedding (LLE) algorithm, were employed to learn low dimensional and distinctive information from quad-polarimetric SAR features. The performance of the new feature sets has comparable performance in oil spill classification.
Citations
More filters
Journal ArticleDOI
TL;DR: Review and analysis of different sources of remotely sensed data and various components of ML classification systems for oil spill detection and monitoring are presented in this study.
Abstract: Remote sensing technologies and machine learning (ML) algorithms play an increasingly important role in accurate detection and monitoring of oil spill slicks, assisting scientists in forecasting their trajectories, developing clean-up plans, taking timely and urgent actions, and applying effective treatments to contain and alleviate adverse effects. Review and analysis of different sources of remotely sensed data and various components of ML classification systems for oil spill detection and monitoring are presented in this study. More than 100 publications in the field of oil spill remote sensing, published in the past 10 years, are reviewed in this paper. The first part of this review discusses the strengths and weaknesses of different sources of remotely sensed data used for oil spill detection. Necessary preprocessing and preparation of data for developing classification models are then highlighted. Feature extraction, feature selection, and widely used handcrafted features for oil spill detection are subsequently introduced and analyzed. The second part of this review explains the use and capabilities of different classical and developed state-of-the-art ML techniques for oil spill detection. Finally, an in-depth discussion on limitations, open challenges, considerations of oil spill classification systems using remote sensing, and state-of-the-art ML algorithms are highlighted along with conclusions and insights into future directions.

74 citations

Journal ArticleDOI
TL;DR: Deep learning algorithms such as the stacked autoencoder (SAE) and deep belief network (DBN) are applied to optimize the polarimetric feature sets and reduce the feature dimension through layer-wise unsupervised pre-training to show that oil spill classification achieved by deep networks outperformed both support vector machine (SVM) and traditional artificial neural networks with similar parameter settings.
Abstract: Polarimetric synthetic aperture radar (SAR) remote sensing provides an outstanding tool in oil spill detection and classification, for its advantages in distinguishing mineral oil and biogenic lookalikes Various features can be extracted from polarimetric SAR data The large number and correlated nature of polarimetric SAR features make the selection and optimization of these features impact on the performance of oil spill classification algorithms In this paper, deep learning algorithms such as the stacked autoencoder (SAE) and deep belief network (DBN) are applied to optimize the polarimetric feature sets and reduce the feature dimension through layer-wise unsupervised pre-training An experiment was conducted on RADARSAT-2 quad-polarimetric SAR image acquired during the Norwegian oil-on-water exercise of 2011, in which verified mineral, emulsions, and biogenic slicks were analyzed The results show that oil spill classification achieved by deep networks outperformed both support vector machine (SVM) and traditional artificial neural networks (ANN) with similar parameter settings, especially when the number of training data samples is limited

64 citations

Journal ArticleDOI
TL;DR: Experimental results have proven that the proposed approach is effective and applicable to classify the ocean oil spill and the convergence ability of optimized WNN can be enhanced, improving overall classification accuracy of oceanOil spill.
Abstract: Oil spill accidents from ship or oil platform cause damage to marine and coastal environment and ecosystems. To monitor such spill events from space, fully polarimetric (Pol-SAR) synthetic aperture radar (SAR) has been greatly used in improving oil spill observation. Aiming to promote ocean oil spill classification accuracy, we developed a new oil spill identification method by combining multiple fully polarimetric SAR features data with an optimized wavelet neural network classifier (WNN). Two sets of RADARSAT-2 fully polarimetric SAR data are applied to test the validity of the developed method. The experimental results show that: (1) the convergence ability of optimized WNN can be enhanced, improving overall classification accuracy of ocean oil spill, in comparison to the classification results based on a common un-optimized WNN classifier; and (2) the joint use of the multiple fully Pol-SAR features as the inputs of the classifier can achieve better classification result than that only with single fully Pol-SAR feature. The developed method can improve classification accuracy by 4.96% and 7.75%, compared with the classification results with un-optimized WNN and only with one single fully polarimetric SAR feature. The classification overall accuracy based on the proposed approach can reach 97.67%. Experimental results have proven that the proposed approach is effective and applicable to classify the ocean oil spill.

50 citations

Journal ArticleDOI
Jin Zhang, Hao Feng, Qingli Luo, Yu Li, Jujie Wei, Jian Li 
TL;DR: It is proved that the SLIC superpixel method significantly improved the oil spill classification accuracy on all the polarimetric feature sets.
Abstract: Oil spill detection plays an important role in marine environment protection. Quad-polarimetric Synthetic Aperture Radar (SAR) has been proved to have great potential for this task, and different SAR polarimetric features have the advantages to recognize oil spill areas from other look-alikes. In this paper we proposed an oil spill detection method based on convolutional neural network (CNN) and Simple Linear Iterative Clustering (SLIC) superpixel. Experiments were conducted on three Single Look Complex (SLC) quad-polarimetric SAR images obtained by Radarsat-2 and Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). Several groups of polarized parameters, including H/A/Alpha decomposition, Single-Bounce Eigenvalue Relative Difference (SERD), correlation coefficients, conformity coefficients, Freeman 3-component decomposition, Yamaguchi 4-component decomposition were extracted as feature sets. Among all considered polarimetric features, Yamaguchi parameters achieved the highest performance with total Mean Intersection over Union (MIoU) of 90.5%. It is proved that the SLIC superpixel method significantly improved the oil spill classification accuracy on all the polarimetric feature sets. The classification accuracy of all kinds of targets types were improved, and the largest increase on mean MIoU of all features sets was on emulsions by 21.9%.

40 citations

Journal ArticleDOI
06 Mar 2018-Sensors
TL;DR: Deep neural autoencoders are used to segment oil spills from Side-Looking Airborne Radar (SLAR) imagery to detect oil spills on Spanish coasts using deep selectional autoen coders and RED-nets (very deep Residual Encoder-Decoder Networks).
Abstract: In this work, we use deep neural autoencoders to segment oil spills from Side-Looking Airborne Radar (SLAR) imagery. Synthetic Aperture Radar (SAR) has been much exploited for ocean surface monitoring, especially for oil pollution detection, but few approaches in the literature use SLAR. Our sensor consists of two SAR antennas mounted on an aircraft, enabling a quicker response than satellite sensors for emergency services when an oil spill occurs. Experiments on TERMA radar were carried out to detect oil spills on Spanish coasts using deep selectional autoencoders and RED-nets (very deep Residual Encoder-Decoder Networks). Different configurations of these networks were evaluated and the best topology significantly outperformed previous approaches, correctly detecting 100% of the spills and obtaining an F 1 score of 93.01% at the pixel level. The proposed autoencoders perform accurately in SLAR imagery that has artifacts and noise caused by the aircraft maneuvers, in different weather conditions and with the presence of look-alikes due to natural phenomena such as shoals of fish and seaweed.

26 citations


Cites result from "Comparison of Oil Spill Classificat..."

  • ...The choice of the classifier architecture is dependent on the problem and when the features are properly selected there are no significant differences in the results, as shown in [19] with PolSAR data....

    [...]

References
More filters
01 Jan 1998
TL;DR: Presenting a method for determining the necessary and sufficient conditions for consistency of learning process, the author covers function estimates from small data pools, applying these estimations to real-life problems, and much more.
Abstract: A comprehensive look at learning and generalization theory. The statistical theory of learning and generalization concerns the problem of choosing desired functions on the basis of empirical data. Highly applicable to a variety of computer science and robotics fields, this book offers lucid coverage of the theory as a whole. Presenting a method for determining the necessary and sufficient conditions for consistency of learning process, the author covers function estimates from small data pools, applying these estimations to real-life problems, and much more.

26,531 citations

Journal ArticleDOI
22 Dec 2000-Science
TL;DR: Locally linear embedding (LLE) is introduced, an unsupervised learning algorithm that computes low-dimensional, neighborhood-preserving embeddings of high-dimensional inputs that learns the global structure of nonlinear manifolds.
Abstract: Many areas of science depend on exploratory data analysis and visualization. The need to analyze large amounts of multivariate data raises the fundamental problem of dimensionality reduction: how to discover compact representations of high-dimensional data. Here, we introduce locally linear embedding (LLE), an unsupervised learning algorithm that computes low-dimensional, neighborhood-preserving embeddings of high-dimensional inputs. Unlike clustering methods for local dimensionality reduction, LLE maps its inputs into a single global coordinate system of lower dimensionality, and its optimizations do not involve local minima. By exploiting the local symmetries of linear reconstructions, LLE is able to learn the global structure of nonlinear manifolds, such as those generated by images of faces or documents of text.

15,106 citations


"Comparison of Oil Spill Classificat..." refers background in this paper

  • ...LLE is capable of learning the global structure of nonlinear manifolds based on the exploration of the local symmetries of linear reconstructions [38]....

    [...]

Journal ArticleDOI
22 Dec 2000-Science
TL;DR: An approach to solving dimensionality reduction problems that uses easily measured local metric information to learn the underlying global geometry of a data set and efficiently computes a globally optimal solution, and is guaranteed to converge asymptotically to the true structure.
Abstract: Scientists working with large volumes of high-dimensional data, such as global climate patterns, stellar spectra, or human gene distributions, regularly confront the problem of dimensionality reduction: finding meaningful low-dimensional structures hidden in their high-dimensional observations. The human brain confronts the same problem in everyday perception, extracting from its high-dimensional sensory inputs-30,000 auditory nerve fibers or 10(6) optic nerve fibers-a manageably small number of perceptually relevant features. Here we describe an approach to solving dimensionality reduction problems that uses easily measured local metric information to learn the underlying global geometry of a data set. Unlike classical techniques such as principal component analysis (PCA) and multidimensional scaling (MDS), our approach is capable of discovering the nonlinear degrees of freedom that underlie complex natural observations, such as human handwriting or images of a face under different viewing conditions. In contrast to previous algorithms for nonlinear dimensionality reduction, ours efficiently computes a globally optimal solution, and, for an important class of data manifolds, is guaranteed to converge asymptotically to the true structure.

13,652 citations


"Comparison of Oil Spill Classificat..." refers background in this paper

  • ...Developed from multidimensional scaling (MDS), it is capable of discovering the nonlinear degrees of freedom that underlie complex natural observations, such as human handwriting or images of a face under different viewing conditions [39]....

    [...]

Book
01 Aug 1982
TL;DR: In this article, the authors present a model of a MICROWAVE REMOTE SENSING FUNDAMENTALS and RADIOMETRY, which is based on the idea of surface scattering.
Abstract: EN BIBLIOTECA: V.1: MICROWAVE REMOTE SENSING FUNDAMENTALS AND RADIOMETRY. V.2: RADAR REMOTE SENSING AND SURFACE SCATTERING AND EMISSION THEORY

3,501 citations

Journal ArticleDOI
TL;DR: The authors outline a new scheme for parameterizing polarimetric scattering problems that relies on an eigenvalue analysis of the coherency matrix and employs a three-level Bernoulli statistical model to generate estimates of the average target scattering matrix parameters from the data.
Abstract: The authors outline a new scheme for parameterizing polarimetric scattering problems, which has application in the quantitative analysis of polarimetric SAR data. The method relies on an eigenvalue analysis of the coherency matrix and employs a three-level Bernoulli statistical model to generate estimates of the average target scattering matrix parameters from the data. The scattering entropy is a key parameter is determining the randomness in this model and is seen as a fundamental parameter in assessing the importance of polarimetry in remote sensing problems. The authors show application of the method to some important classical random media scattering problems and apply it to POLSAR data from the NASA/JPL AIRSAR data base.

2,262 citations


"Comparison of Oil Spill Classificat..." refers methods in this paper

  • ...In 1997, Cloude and Pottier proposed a polarimetric information extraction method based on the decomposition of the 3 × 3 coherency matrix (3) of the target [31]:...

    [...]