scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Comparison of the reflex vasomotor responses to separate and combined stimulation of the carotid sinus and aortic arch baroreceptors by pulsatile and non-pulsatile pressures in the dog.

01 Aug 1970-The Journal of Physiology (J Physiol)-Vol. 209, Iss: 2, pp 257-293
TL;DR: In the anaesthetized dog the carotid sinuses and aortic arch were isolated from the circulation and separately perfused with blood by a method which enabled the mean pressure, pulse pressure and pulse frequency to be varied independently in each vasosensory area.
Abstract: 1. In the anaesthetized dog the carotid sinuses and aortic arch were isolated from the circulation and separately perfused with blood by a method which enabled the mean pressure, pulse pressure and pulse frequency to be varied independently in each vasosensory area. The systemic circulation was perfused at constant blood flow by means of a pump and the systemic venous blood was oxygenated by an extracorporeal isolated pump-perfused donor lung preparation.2. When the vasosensory areas were perfused at non-pulsatile pressures within the normal physiological range of mean pressures, the reflex reduction in systemic vascular resistance produced by a given rise in mean carotid sinus pressure was significantly greater than that resulting from the same rise of aortic arch pressure.3. On the other hand, when the vasosensory areas were perfused at normal pulsatile pressures and within the normal physiological range of mean pressures, there was no difference in the size of the reflex vascular responses elicited by the same rise in mean pressure in the carotid sinuses and in the aortic arch.4. Whereas the vasomotor responses elicited reflexly by changes in mean carotid sinus pressure are modified by alterations in pulse pressure, those evoked by the aortic arch baroreceptors through changes of mean pressure are only weakly affected by modifications in pulse pressure. Evidence for this was obtained from single stepwise changes of mean pressure in each vasosensory area during pulsatile and non-pulsatile perfusion, and from curves relating the mean pressure in the carotid sinuses or aortic arch and systemic arterial perfusion pressure.5. The vasomotor response elicited by combined stimulation of the carotid sinus and aortic arch baroreceptors was greater than either response resulting from their separate stimulation.6. When the mean perfusion pressures in the two vasosensory areas are changed together, the curve relating mean pressure to systemic arterial pressure during pulsatile perfusion of the areas is considerably flatter than that for non-pulsatile perfusion.7. Increasing the pulse pressure in the carotid sinuses or aortic arch caused a decrease in systemic vascular resistance, the response elicited from the carotid sinuses being the larger.8. Altering the phase angle between the pulse pressure waves in the carotid sinuses and aortic arch had no effect on systemic vascular resistance.9. In both vasosensory areas, increasing the pulse frequency caused a reduction in systemic vascular resistance.
Citations
More filters
BookDOI
01 Jan 1974
TL;DR: This chapter discusses Neuromuscular Transmission-The Transmitter-Receptor Combination, which focuses on the role of the Nerve Impulse in the synthesis, storage, and release of Acetylcholine.
Abstract: Section I-Peripheral Nerve.- 1 Peripheral Nerve Structure.- 1. Introduction.- 2. Histology and Development.- 3. The Axon.- 3.1. Filaments and Microtubules.- 3.2. Other Organelles and the Axolemma.- 4. Sheaths of Axons.- 4.1. Schwann Cells.- 4.2. Myelin.- 4.3. Function of Schwann Cells and Their Myelin Sheaths.- 4.4. Connective Tissue Sheaths.- 5. References.- 2 The Nerve Impulse.- 1. Introduction.- 2. Passive Electrical Properties.- 3. Voltage-Clamp Analysis of the Ionic Current.- 4. Momentary Current-Voltage Relations.- 5. The Threshold Conditions for Excitation.- 6. Factors Determining Conduction Velocity.- 7. References.- 3 Axoplasmic Transport-Energy Metabolism and Mechanism.- 1. Introduction.- 2. Fast Axoplasmic Transport.- 2.1. Characterization.- 2.2. Mechanism and Energy Supply.- 2.3. Transport and Membrane Function.- 3. Slow Axoplasmic Transport.- 3.1. Characterization.- 3.2. Mechanism.- 4. References.- Section IIA-Junctional Transmission-Structure.- 4 Neuromuscular Junctions and Electric Organs.- 1. Introduction.- 2. The Typical Neuromuscular Junction.- 2.1. Distribution and Location of Nerve Terminals.- 2.2. The Axon.- 2.3. The Synaptic Space.- 2.4. Postjunctional Muscle Fiber.- 3. Variations of Motor End Plates.- 3.1. Variations from Class to Class.- 3.2. Endings on Slow-Twitch and Rapid-Twitch Fibers.- 3.3. Endings on Slow Tonic Muscle Fibers.- 4. Electric Organs.- 4.1. Electrocytes.- 4.2. Innervation and Ultrastructure.- 5. References.- 5 The Peripheral Autonomic System.- 1. Anatomical Considerations: Sympathetic and Parasympathetic Divisions.- 2. Morphological Observations.- 2.1. Preganglionic Neurons.- 2.2. Postganglionic Neurons.- 2.3. Adrenal and Extra-Adrenal Chromaffin Cells.- 3. References.- 6 Ultrastructure of Ganglionic Junctions.- 1. General Considerations.- 2. Sympathetic Ganglia.- 2.1. Amphibia.- 2.2. Reptiles.- 2.3. Mammals.- 2.4. Some Effects of Different Fixatives.- 3. Parasympathetic Ganglia.- 3.1. Ciliary Ganglion.- 3.2. Otic Ganglion.- 3.3. Ganglia of the Enteric Plexuses.- 3.4. Cardiac Ganglion Cells.- 4. Summary and Comment.- 5. References.- Section IIB-Junctional Transmission-Function.- 7(i) Neuromuscular Transmission-Presynaptic Factors.- 1. Synthesis, Storage, and Release of Acetylcholine.- 1.1. Synthesis of ACh.- 1.2. Storage and Release.- 2. The Acceleration of Release by Nerve Impulses.- 2.1. The Role of the Nerve Impulse.- 2.2. The Role of Ca2+.- 2.3. After- Effects of Depolarization-Secretion Coupling.- 3. References.- 7 (ii) Neuromuscular Transmission-The Transmitter-Receptor Combination.- 1. Introduction.- 2. Molecular Basis of Chemoelectric Transduction.- 3. Pharmacology.- 4. Chemical Nature of the Acetylcholine Receptor.- 5. Desensitization.- 6. References.- 7 (iii) Neuromuscular Transmission-Enzymatic Destruction of Acetylcholine.- 1. Location and Measurement of Cholinesterases at the Junction.- 1.1. Histochemical Staining.- 1.2. Microchemical Methods.- 1.3. Assay of External AChE.- 1.4. Radioautographic Methods.- 2. Amounts and Types of Cholinesterase at the Junctions.- 3. Requirement for AChE in Impulse Transmission.- 4. Relation of AChE to ACh- Receptors.- 5. Quantitative Relation of AChE to ACh at the End Plate.- 6. References.- 8 Ganglionic Transmission.- 1. Introduction.- 2. Response of Autonomic Ganglia to Preganglionic Volleys.- 2.1. Response of Normal Ganglia.- 2.2. Response of Curarized Ganglia.- 2.3. Slow Ganglionic Responses and Afterdischarges.- 3. Electrical Constants of Ganglion Cell Membrane.- 4. Action Potentials of Single Ganglion Cells.- 4.1. Response to Antidromic Stimulation.- 4.2. Response to Direct Intracellular Stimulation.- 4.3. Response to Orthodromic Stimulation.- 4.4. Ionic Requirement for Generation of Action Potential.- 5. Nature and Electrogenesis of Postsynaptic Potentials.- 5.1. The "Fast" Excitatory Postsynaptic Potential.- 5.2. The "Slow" Excitatory Postsynaptic Potential.- 5.3. The "Late Slow" Excitatory Postsynaptic Potential.- 5.4. The "Slow" Inhibitory Postsynaptic Potential.- 6. Cholinergic and Adrenergic Receptors at Preganglionic Nerve Terminals.- 6.1. Cholinergic Receptor Site.- 6.2. Adrenergic Receptor Site.- 7. References.- 9 Function of Autonomic Ganglia.- 1. Introduction.- 2. Ganglia as Coordinating Centers.- 2.1. The Relay Hypothesis of Ganglionic Function.- 2.2. Development of a Stochastic Hypothesis.- 3. Experimental Evidence.- 3.1. Observed Patterns of Innervation.- 3.2. Ganglionic Activity and Factors Influencing It.- 3.3. Relative Autonomy of Ganglia.- 4. Conclusions.- 5. References.- 10 Peripheral Autonomic Transmission.- 1. Introduction.- 2. Definition of the Autonomic Neuromuscular Junction.- 2.1. Relation of Nerve Fibers to Muscle Effector Bundles.- 2.2. Relation of Nerve Fibers to Individual Smooth Muscle Cells.- 3. Adrenergic Transmission.- 3.1. Introduction.- 3.2. Structure of Adrenergic Neurons and Storage of Noradrenaline.- 3.3. Electrophysiology of Adrenergic Transmission.- 3.4. Ionic Basis of the Action of Catecholamines on the Postjunctional Membrane.- 3.5. Summary.- 4. Cholinergic Transmission.- 4.1. Introduction.- 4.2. Localization of Acetylcholinesterase.- 4.3. Electrophysiology of Cholinergic Transmission.- 4.4. Ionic Basis of the Action of ACh on the Postjunctional Membrane.- 4.5. Summary.- 5. Purinergic Transmission.- 5.1. Introduction.- 5.2. Electrophysiology of Purinergic Transmission.- 5.3. Summary.- 6. Conclusions.- 7. References.- 11 "Trophic" Functions.- 1. Introduction.- 2. Regulation of Taste Buds.- 3. Regulation of Amphibian Limb Regeneration.- 4. Regulation of Physiological and Metabolic Properties of Muscle.- 4.1. Resting Membrane Potential.- 4.2. Acetylcholine Sensitivity.- 4.3. Cholinesterase Activity.- 4.4. The Role of ACh Release.- 4.5. The Dynamic Nature of the Muscle Fiber.- 4.6. Plasticity of the Motor Unit.- 5. Mechanisms of Neural Regulation.- 6. References.- Section III-Receptors-Structure and Function.- 12 Cutaneous Receptors.- 1. Introduction.- 2. Morphology of Cutaneous Nerves.- 2.1. Uniformity of Cutaneous Axons.- 2.2. Relative Numbers of Myelinated and Nonmyelinated Axons.- 3. Morphology of Cutaneous Receptors.- 3.1. Encapsulated Receptors.- 3.2. Unencapsulated Corpuscular Receptors.- 3.3. Noncorpuscular Receptors.- 4. Physiology of Cutaneous Receptors.- 4.1. Cutaneous Mechanoreceptors.- 4.2. Cutaneous Thermoreceptors.- 4.3. Nociceptors.- 5. References.- 13 The Pacinian Corpuscle.- 1. Introduction.- 2. Morphology.- 3. Afferent Responses to Mechanical Stimuli.- 4. Mechanical Properties of the Corpuscle.- 5. Receptor Potentials.- 6. Impulse Activity in the Nerve Terminal.- 7. Distribution of Pacinian Corpuscles.- 8. Central Effects of Impulses from Pacinian Corpuscles.- 9. References.- 14 Receptors in Muscles and Joints.- 1. Introduction.- 2. Joint Receptors.- 3. Tendon Organs.- 4. Muscle Spindles.- 4.1. Reptiles.- 4.2. Amphibia.- 4.3. Birds.- 4.4. Mammals.- 5. Uncertain Origin of Adaptation.- 6. References.- 15 Enteroceptors.- 1. Introduction.- 2. Methods.- 2.1. Histology.- 2.2. Physiology.- 3. Cardiovascular Receptors.- 3.1. Systemic Arterial Baroreceptors.- 3.2. Pulmonary Arterial Baroreceptors.- 3.3. Ventricular Receptors.- 3.4. Atriovenous Receptors.- 4. Respiratory System Receptors.- 4.1. Cough and Irritant Receptors.- 4.2. Pulmonary Stretch Receptors.- 4.3. Type J Receptors.- 4.4. Other Receptors.- 5. Alimentary System Receptors.- 5.1. Muscular Receptors.- 5.2. Serosal Receptors.- 5.3. Muscularis Mucosae Receptors.- 5.4. Chemoreceptors.- 5.5 Hepatic Osmoreceptors.- 6. Urinary Tract Receptors.- 6.1. Bladder.- 6.2. Urethra.- 7. Other Enteroreceptors.- 8. References.- 16 Arterial Chemoreceptors.- 1. Introduction.- 2. Structure.- 2.1. Light Microscopy.- 2.2. Electron Microscopy.- 2.3. Degeneration Studies.- 3. Function.- 3.1. Types of Activity in the Nerve Supply to the Receptor Complex.- 3.2. The Type I Cell.- 4. The Identity of the Receptor.- 4.1. The Received View.- 4.2. A New Hypothesis.- 5. References.- 17 Taste Receptors.- 1. Introduction.- 2. Gustatory Nerve Fiber Response to Chemical Stimuli.- 2.1. Multiple Sensitivity of Single Chorda Tympani Fibers.- 2.2. Neural Code for Quality of Taste and "Across-Fiber Pattern" Theory.- 3. Electrical Responses of Gustatory Cells to Chemical Stimuli.- 3.1. Innervation and Structure of Taste Bud.- 3.2. How Do Gustatory Cells Respond to Chemical Stimuli?.- 4. References.

677 citations


Cites methods from "Comparison of the reflex vasomotor ..."

  • ...A fractionation of the soluble protein and polypeptides into different classes of protein was made using gel filtration and isoelectric focusing (Kidwai and Ochs, 1969; Ochs et al., 1969; James and Austin, 1970; James et al., 1970; Sabri and Ochs, 1972)....

    [...]

Journal ArticleDOI
TL;DR: The effects of spontaneous temporary blood pressure fluctuations were studied by correlating different pressure parameters of individual heart beats to the probability of occurrence of a sympathetic burst and to the amplitude of the occurring burst.
Abstract: 1. Recordings of multi-unit sympathetic activity were made from median or peroneal muscle nerve fascicles in thirty-three healthy subjects, resting in recumbent position. Simultaneous recordings of intra-arterial blood pressure were made in seventeen subjects. The neural activity, quantified by counting the number of pulse synchronous sympathetic bursts in the mean voltage neurogram (burst incidence), was plotted against the arterial blood pressure level and the age of the subjects. The effects of spontaneous temporary blood pressure fluctuations were studied by correlating different pressure parameters of individual heart beats to the probability of occurrence of a sympathetic burst and to the amplitude of the occurring burst. 2. Between different subjects there were marked differences in burst incidence, from less than 10 to more than 90 bursts/100 heart beats. No correlation was found to interindividual differences in the arterial blood pressure level but there was a slight tendency for increasing burst incidence with increasing age. 3. Irrespective of the magnitude of the burst incidence, the bursts always occurred more frequently during spontaneous transient blood pressure reductions than during transient increases in blood pressure. When, for each heart cycle, the occurrence of a sympathetic burst was correlated with different blood pressure parameters there was regularly a close negative correlation to diastolic pressure, a low correlation to systolic and an intermediary negative correlation to mean blood pressure. There was a positive correlation to pulse pressure and to pulse interval. 4. When measured for individual heart beats, not only the occurrence but also the mean voltage amplitude of the sympathetic bursts tended to increase with decreasing diastolic pressure. 5. In a given subject when comparing heart beats with the same diastolic pressure, the occurrence as well as the amplitude of the sympathetic bursts was higher for heart beats occurring during falling than for heart beats occurring during rising blood pressure. For a given change in diastolic blood pressure, sympathetic activity changed more if pressure was falling than if it was rising. 6. The findings suggest that the sympathetic outflow is modulated by arterial baroreflex mechanisms and that transient variations in the strength of the activity are, to a large extent, determined by diastolic blood pressure fluctuations. The intimate correlation with ‘dynamic’ variations in blood pressure and the absence of correlation to the ‘static’ blood pressure level suggests that the sympathetic outflow to skeletal muscles is of importance for buffering acute blood pressure changes but has little influence on the long term blood pressure level. The difference in reflex sensitivity between falling and rising pressure indicates that acute blood pressure decreases may be buffered more efficiently than acute blood pressure increases. 7. In twenty-seven subjects baroreflex latency was calculated from the QRS-complexes in the e.c.g. to the appropriate systolic inhibition in the sympathetic activity. When recording in the peroneal nerve, the latency ranged between 1·16 and 1·49 sec and there was a positive correlation with the height of the subjects. It is suggested that such latency measurements may be used clinically to evaluate conduction in sympathetic fibres.

596 citations

Journal ArticleDOI
TL;DR: Over the past ten years considerable research effort has focused on the initial neurons of the baroreceptor reflex, and it is here that work is most rapidly approaching issues of the cellular basis of function.
Abstract: The neural regulation of the cardiovascular system has been the subject of active investigation for more than a century. Generally, the detailed infor­ mation available about peripheral mechanisms, both afferent and efferent, far exceeds what we know about the central nervous system (CNS) pro­ cessing, which gives rise to reflex responses (80). The current picture of the CNS contribution to cardiovascular regulation consists primarily of a loose network schematic including identified cell locations and connections involved in baroreflexes (Figure 1) and is the recent topic of several excellent, comprehensive reviews (80, 88, 132, 144). Much less is known about the functional properties by which these neurons communicate, how they are modulated, or the mechanisms responsible for various features of the reflex. Over the past ten years considerable research effort has focused on the initial neurons of the baroreceptor reflex, and it is here that work is most rapidly approaching issues of the cellular basis of function. Most cardio93

440 citations

Journal ArticleDOI
TL;DR: Protective measures that reduce excessive orthostatic blood pooling have been developed and evaluated and suggest that the abdominal compartment and perhaps leg skin vasculature are the most likely candidates.
Abstract: In patients with autonomic failure orthostatic hypotension results from an impaired capacity to increase vascular resistance during standing. This fundamental defect leads to increased downward pooling of venous blood and a consequent reduction in stroke volume and cardiac output that exaggerates the orthostatic fall in blood pressure. The location of excessive venous blood pooling has not been established so far, but present data suggest that the abdominal compartment and perhaps leg skin vasculature are the most likely candidates. To improve the orthostatic tolerance in patients with autonomic failure, protective measures that reduce excessive orthostatic blood pooling have been developed and evaluated. These measures include physical counter-manoeuvres and abdominal compression.

317 citations


Cites background from "Comparison of the reflex vasomotor ..."

  • ...First, the observation that carotid sinus receptors respond more vigorously to rapid rather than slow changes in pressure makes it likely that they play the major role in the initial reflex adjustments (Angell-James & Daly 1970)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: Heymans and Neil have summarized present knowledge of the reflex and identified the baroceptors of the carotid sinus and aortic arch which reflexly control the systemic blood pressure.
Abstract: • The baroceptors of the carotid sinus (and arterj') and the aortic arch are the major sense organs which reflexly control the systemic blood pressure. Since the demonstration of the reflex function of these receptors, there has been much work on the responses of the blood pressure, heart, and peripheral vessels to changes in pressure in the carotid arteries and the aorta,\" on blood flow in particular organs, and on the responses of the sensorj' nerve fibers to alterations of blood pressure. Heymans and Neil have summarized present knowledge of the reflex. In recent years, techniques used to study physical control systems have been applied to the study of biological systems.\" Two aims of such investigations are to gain insight into the general nature of biological regulation and to see how particular regulations are accomplished. The approach is to state quantitatively the relationship between the stimulus (pressure, temperature, light, etc.) and the response (heart rate, vasomotor activity, pupillary diameter, etc.). A complete description requires analysis of the contributions of each unit: a) the receptor; b) the central nervous system; c) the motor nerves; d) the effector organ. Studies of this kind have been conducted on the pupillary response to light, respiration,' respiratory-circulatory interrelationships, and the stretch reflex, as well as on other systems. The carotid sinus reflex has been studied by techniques involving an electronic analog. In the medullary blood pressure control

188 citations

Journal ArticleDOI
TL;DR: The reflex effects of alterations in lung volume on systemic vascular resistance have been studied in anaesthetized dogs under conditions in which the systemic circulation was perfused at constant blood flow.
Abstract: 1. The reflex effects of alterations in lung volume on systemic vascular resistance have been studied in anaesthetized dogs under conditions in which the systemic circulation was perfused at constant blood flow. The pressures in the isolated perfused carotid sinuses and aortic arch, and the arterial blood P(O2) and P(CO2) were maintained constant.2. A maintained inflation of the lungs produced by injection of air into the trachea caused a fall in systemic arterial perfusion pressure, indicating vasodilatation. The size of the systemic vasodilator response varied directly with the pressure and volume of gas used to inflate the lungs. A similar effect was observed when the tidal volume of lungs ventilated by an intermittent positive pressure was increased.3. Collapse of the lungs by creating a pneumothorax in closed-chest spontaneously breathing animals evoked a systemic vasoconstrictor response which was reversed when the lungs were re-expanded.4. These vasodilator responses were abolished by dividing the pulmonary branches of the thoracic vagosympathetic nerves. Evidence is presented that the afferent fibres run in the cervical vagosympathetic nerves and through the stellate ganglia.5. The responses were unaffected by atropine, but were abolished by hexamethonium, guanethidine and by bretylium tosylate, indicating that they are mediated via the sympathetic nervous system.6. Evidence is presented that the lungs are a constant course of afferent impulses inhibiting the ;vasomotor centre', and that the lung inflation-systemic vasodilator reflex is a potential mechanism operating in eupnoeic breathing.

115 citations