scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging

10 Apr 2003-Applied Optics (Optical Society of America)-Vol. 42, Iss: 11, pp 1938-1946
TL;DR: An approach is proposed for removing the wavefront curvature introduced by the microscope imaging objective in digital holography, which otherwise hinders the phase contrast imaging at reconstruction planes and it is shown that a correction effect can be obtained at all reconstruction planes.
Abstract: An approach is proposed for removing the wave front curvature introduced by the microscope imaging objective in digital holography, which otherwise hinders the phase contrast imaging at reconstruction planes. The unwanted curvature is compensated by evaluating a correcting wave front at the hologram plane with no need for knowledge of the optical parameters, focal length of the imaging lens, or distances in the setup. Most importantly it is shown that a correction effect can be obtained at all reconstruction planes. Three different methods have been applied to evaluate the correction wave front and the methods are discussed in detail. The proposed approach is demonstrated by applying digital holography as a method of coherent microscopy for imaging amplitude and phase contrast of microstructures.
Citations
More filters
Journal ArticleDOI
TL;DR: The displacement of microfibers due to interactions with cells in three spatial dimensions has been measured as a function of time at subsecond and micrometer levels in a direct and straightforward manner and it has been shown that DHM is a highly efficient and versatile means for quantitative tracking and analysis of cell motility.
Abstract: Three-dimensional profiling and tracking by digital holography microscopy (DHM) provide label-free and quantitative analysis of the characteristics and dynamic processes of objects, since DHM can record real-time data for microscale objects and produce a single hologram containing all the information about their three-dimensional structures. Here, we have utilized DHM to visualize suspended microspheres and microfibers in three dimensions, and record the four-dimensional trajectories of free-swimming cells in the absence of mechanical focus adjustment. The displacement of microfibers due to interactions with cells in three spatial dimensions has been measured as a function of time at subsecond and micrometer levels in a direct and straightforward manner. It has thus been shown that DHM is a highly efficient and versatile means for quantitative tracking and analysis of cell motility.

37 citations


Cites methods from "Compensation of the inherent wave f..."

  • ...In the experiment, aberrations and background distortions of the optical field are minimized by subtracting the background image.(1,2,18,19)...

    [...]

Journal ArticleDOI
TL;DR: In this paper, an advanced two-step phase demodulation algorithm based on the orthogonality of diamond diagonal vectors is proposed, which reveals significantly faster computing speed, better accuracy and the readily comprehensible physical picture of the orthonormalization algorithm.
Abstract: An advanced two-step phase demodulation algorithm is proposed based on the orthogonality of diamond diagonal vectors. By performing the subtraction and the addition of two background-eliminated interferograms, respectively, two corresponding orthogonal vectors are constructed easily. Then, the measured phase and the phase shifts can be extracted from the elements and lengths of these orthogonal vectors. In addition to maintaining advantages of the known two-step algorithms, the proposed algorithm reveals significantly faster computing speed, better accuracy and the readily comprehensible physical picture of the orthonormalization algorithm. Both the simulation and the experimental results demonstrate the outstanding performance of the proposed algorithm.

37 citations

Journal ArticleDOI
TL;DR: This work investigates the necessary condition on the object size and spatial bandwidth for complete 3D microscopic imaging with phase-shifting digital holography with various common arrangements.
Abstract: Microscopy by holographic means is attractive because it permits true three-dimensional (3D) visualization and 3D display of the objects. We investigate the necessary condition on the object size and spatial bandwidth for complete 3D microscopic imaging with phase-shifting digital holography with various common arrangements. The cases for which a Fresnel holographic arrangement is sufficient and those for which object magnification is necessary are defined. Limitations set by digital sensors are analyzed in the Wigner domain. The trade-offs between the various holographic arrangements in terms of conditions on the object size and bandwidth, recording conditions required for complete representation, and complexity are discussed.

37 citations

Journal ArticleDOI
TL;DR: This method allows direct recovery of continuous phase information encoded in digital holography without cumbersome physical or digital compensation procedure and provides a new way to eliminate the tilt and quadratic phase aberration inherent in digital HoloLens.

37 citations

Journal ArticleDOI
TL;DR: This Roadmap article on digital holography provides an overview of a vast array of research activities in the field on sensing, 3D imaging and displays, virtual and augmented reality, microscopy, cell identification, tomography, label-free live cell imaging, and other applications.
Abstract: This Roadmap article on digital holography provides an overview of a vast array of research activities in the field of digital holography. The paper consists of a series of 25 sections from the prominent experts in digital holography presenting various aspects of the field on sensing, 3D imaging and displays, virtual and augmented reality, microscopy, cell identification, tomography, label-free live cell imaging, and other applications. Each section represents the vision of its author to describe the significant progress, potential impact, important developments, and challenging issues in the field of digital holography.

36 citations

References
More filters
Journal ArticleDOI
TL;DR: A new method is proposed in which the distribution of complex amplitude at a plane is measured by phase-shifting interferometry and then Fresnel transformed by a digital computer, which can reconstruct an arbitrary cross section of a three-dimensional object with higher image quality and a wider viewing angle than from conventional digital holography using an off-axis configuration.
Abstract: A new method for three-dimensional image formation is proposed in which the distribution of complex amplitude at a plane is measured by phase-shifting interferometry and then Fresnel transformed by a digital computer. The method can reconstruct an arbitrary cross section of a three-dimensional object with higher image quality and a wider viewing angle than from conventional digital holography using an off-axis configuration. Basic principles and experimental verification are described.

1,813 citations

Journal ArticleDOI
TL;DR: The principle of recording holograms directly on a CCD target is described and a real image of the object is reconstructed from the digitally sampled hologram by means of numerical methods.
Abstract: The principle of recording holograms directly on a CCD target is described. A real image of the object is reconstructed from the digitally sampled hologram by means of numerical methods.

1,444 citations

Journal ArticleDOI
TL;DR: A new application of digital holography for phase-contrast imaging and optical metrology and an application to surface profilometry shows excellent agreement with contact-stylus probe measurements.
Abstract: We present a new application of digital holography for phase-contrast imaging and optical metrology. This holographic imaging technique uses a CCD camera for recording of a digital Fresnel off-axis hologram and a numerical method for hologram reconstruction. The method simultaneously provides an amplitude-contrast image and a quantitative phase-contrast image. An application to surface profilometry is presented and shows excellent agreement with contact-stylus probe measurements.

1,202 citations

Journal ArticleDOI
TL;DR: Off-axis holograms recorded with a magnified image of microscopic objects are numerically reconstructed in amplitude and phase by calculation of scalar diffraction in the Fresnel approximation to show that the transverse resolution is equal to the diffraction limit of the imaging system.
Abstract: We present a digital method for holographic microscopy involving a CCD camera as a recording device. Off-axis holograms recorded with a magnified image of microscopic objects are numerically reconstructed in amplitude and phase by calculation of scalar diffraction in the Fresnel approximation. For phase-contrast imaging the reconstruction method involves the computation of a digital replica of the reference wave. A digital method for the correction of the phase aberrations is presented. We present a detailed description of the reconstruction procedure and show that the transverse resolution is equal to the diffraction limit of the imaging system.

1,174 citations

Journal ArticleDOI
TL;DR: The principles and major applications of digital recording and numerical reconstruction of holograms (digital holography) are described, which are applied to measure shape and surface deformation of opaque bodies and refractive index fields within transparent media.
Abstract: This article describes the principles and major applications of digital recording and numerical reconstruction of holograms (digital holography). Digital holography became feasible since charged coupled devices (CCDs) with suitable numbers and sizes of pixels and computers with sufficient speed became available. The Fresnel or Fourier holograms are recorded directly by the CCD and stored digitally. No film material involving wet-chemical or other processing is necessary. The reconstruction of the wavefield, which is done optically by illumination of a hologram, is performed by numerical methods. The numerical reconstruction process is based on the Fresnel–Kirchhoff integral, which describes the diffraction of the reconstructing wave at the micro-structure of the hologram. In the numerical reconstruction process not only the intensity, but also the phase distribution of the stored wavefield can be computed from the digital hologram. This offers new possibilities for a variety of applications. Digital holography is applied to measure shape and surface deformation of opaque bodies and refractive index fields within transparent media. Further applications are imaging and microscopy, where it is advantageous to refocus the area under investigation by numerical methods.

1,171 citations