scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging

10 Apr 2003-Applied Optics (Optical Society of America)-Vol. 42, Iss: 11, pp 1938-1946
TL;DR: An approach is proposed for removing the wavefront curvature introduced by the microscope imaging objective in digital holography, which otherwise hinders the phase contrast imaging at reconstruction planes and it is shown that a correction effect can be obtained at all reconstruction planes.
Abstract: An approach is proposed for removing the wave front curvature introduced by the microscope imaging objective in digital holography, which otherwise hinders the phase contrast imaging at reconstruction planes. The unwanted curvature is compensated by evaluating a correcting wave front at the hologram plane with no need for knowledge of the optical parameters, focal length of the imaging lens, or distances in the setup. Most importantly it is shown that a correction effect can be obtained at all reconstruction planes. Three different methods have been applied to evaluate the correction wave front and the methods are discussed in detail. The proposed approach is demonstrated by applying digital holography as a method of coherent microscopy for imaging amplitude and phase contrast of microstructures.
Citations
More filters
Journal ArticleDOI
TL;DR: A purely automatic and accurate phase aberration compensation method in digital holographic microscopy for phase-contrast imaging of living cells that outperforms the phase-variation-minimization method in terms of noise robustness and calculation speed.

20 citations

Journal ArticleDOI
TL;DR: This study has upgraded application of DMH through the in-line image-plane phase-shifting technique and the image correlation algorithm to reconstruct the 3D profile of a biological sample and the quality of the reconstructed image are improved significantly.

20 citations

Journal ArticleDOI
TL;DR: In the infrared (IR) range, a much higher stability, a wider view angle, and shorter acquisition distances are achievable, allowing easier acquisition of large object holograms as discussed by the authors.
Abstract: Digital Holography (DH) in the infrared (IR) range presents some peculiar aspects compared with the more common DH in the visible range. The current major drawback is due to the size of the pixel pitch of presently available thermal cameras, which is rather large compared to what would be optimal, and what is possible with analog films. However, since the ${\hbox{CO}}_{2}$ laser wavelength is 15 times longer than average visible wavelength, a much higher stability, a wider view angle, and shorter acquisition distances are achievable, allowing easier acquisition of large object holograms.

20 citations


Cites methods from "Compensation of the inherent wave f..."

  • ...In order to numerically simulate the reconstruction process achievable with traditional films, a number of suitable algorithms have been developed, and to them several post processing possibilities have been added, like plane of focus adjustment [12], [13], amplitude and phase images computing from a single hologram [14], recording aberration compensation [15], [16], and more....

    [...]

Journal ArticleDOI
TL;DR: In this article, the performance of phase contrast, differential interference contrast, Hoffman and spiral phase contrast visualization methods are discussed in 3D from a single digital holographic microscope (DHM) recording the propagating component of the scattered field.
Abstract: A digital holographic microscope (DHM) can be considered as a microscope with an extended depth of field. From a single DHM recording the propagating component of the scattered field can be reconstructed in three dimensions (3D). As in conventional white light microscopy contrasting enhancing techniques can be applied to highlight characteristics of interest. If these techniques are used to enhance the reconstruction from a DHM, then it is important to understand the characteristics of these techniques in 3D. In this paper the performance of phase contrast, differential interference contrast, Hoffman and spiral phase contrast visualization methods are discussed in 3D.

19 citations

Journal ArticleDOI
TL;DR: This Letter presents a robust and rapid refocusing criterion suitable for color interferometric digital holographic microscopy, and, more generally, for applications where complex amplitude is known for at least two different wavelengths.
Abstract: The knowledge of the complex amplitude of optical fields, that is, both quantitative phase and intensity, enables numeric reconstruction along the optical axis. Nonetheless, a criterion is required for autofocusing. This Letter presents a robust and rapid refocusing criterion suitable for color interferometric digital holographic microscopy, and, more generally, for applications where complex amplitude is known for at least two different wavelengths. This criterion uses the phase in the Fourier domain, which is compared among wavelengths. It is applicable whatever the nature of the observed object: opaque, refractive, or both mixed. The method is validated with simulated and experimental holograms.

19 citations

References
More filters
Journal ArticleDOI
TL;DR: A new method is proposed in which the distribution of complex amplitude at a plane is measured by phase-shifting interferometry and then Fresnel transformed by a digital computer, which can reconstruct an arbitrary cross section of a three-dimensional object with higher image quality and a wider viewing angle than from conventional digital holography using an off-axis configuration.
Abstract: A new method for three-dimensional image formation is proposed in which the distribution of complex amplitude at a plane is measured by phase-shifting interferometry and then Fresnel transformed by a digital computer. The method can reconstruct an arbitrary cross section of a three-dimensional object with higher image quality and a wider viewing angle than from conventional digital holography using an off-axis configuration. Basic principles and experimental verification are described.

1,813 citations

Journal ArticleDOI
TL;DR: The principle of recording holograms directly on a CCD target is described and a real image of the object is reconstructed from the digitally sampled hologram by means of numerical methods.
Abstract: The principle of recording holograms directly on a CCD target is described. A real image of the object is reconstructed from the digitally sampled hologram by means of numerical methods.

1,444 citations

Journal ArticleDOI
TL;DR: A new application of digital holography for phase-contrast imaging and optical metrology and an application to surface profilometry shows excellent agreement with contact-stylus probe measurements.
Abstract: We present a new application of digital holography for phase-contrast imaging and optical metrology. This holographic imaging technique uses a CCD camera for recording of a digital Fresnel off-axis hologram and a numerical method for hologram reconstruction. The method simultaneously provides an amplitude-contrast image and a quantitative phase-contrast image. An application to surface profilometry is presented and shows excellent agreement with contact-stylus probe measurements.

1,202 citations

Journal ArticleDOI
TL;DR: Off-axis holograms recorded with a magnified image of microscopic objects are numerically reconstructed in amplitude and phase by calculation of scalar diffraction in the Fresnel approximation to show that the transverse resolution is equal to the diffraction limit of the imaging system.
Abstract: We present a digital method for holographic microscopy involving a CCD camera as a recording device. Off-axis holograms recorded with a magnified image of microscopic objects are numerically reconstructed in amplitude and phase by calculation of scalar diffraction in the Fresnel approximation. For phase-contrast imaging the reconstruction method involves the computation of a digital replica of the reference wave. A digital method for the correction of the phase aberrations is presented. We present a detailed description of the reconstruction procedure and show that the transverse resolution is equal to the diffraction limit of the imaging system.

1,174 citations

Journal ArticleDOI
TL;DR: The principles and major applications of digital recording and numerical reconstruction of holograms (digital holography) are described, which are applied to measure shape and surface deformation of opaque bodies and refractive index fields within transparent media.
Abstract: This article describes the principles and major applications of digital recording and numerical reconstruction of holograms (digital holography). Digital holography became feasible since charged coupled devices (CCDs) with suitable numbers and sizes of pixels and computers with sufficient speed became available. The Fresnel or Fourier holograms are recorded directly by the CCD and stored digitally. No film material involving wet-chemical or other processing is necessary. The reconstruction of the wavefield, which is done optically by illumination of a hologram, is performed by numerical methods. The numerical reconstruction process is based on the Fresnel–Kirchhoff integral, which describes the diffraction of the reconstructing wave at the micro-structure of the hologram. In the numerical reconstruction process not only the intensity, but also the phase distribution of the stored wavefield can be computed from the digital hologram. This offers new possibilities for a variety of applications. Digital holography is applied to measure shape and surface deformation of opaque bodies and refractive index fields within transparent media. Further applications are imaging and microscopy, where it is advantageous to refocus the area under investigation by numerical methods.

1,171 citations