scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging

10 Apr 2003-Applied Optics (Optical Society of America)-Vol. 42, Iss: 11, pp 1938-1946
TL;DR: An approach is proposed for removing the wavefront curvature introduced by the microscope imaging objective in digital holography, which otherwise hinders the phase contrast imaging at reconstruction planes and it is shown that a correction effect can be obtained at all reconstruction planes.
Abstract: An approach is proposed for removing the wave front curvature introduced by the microscope imaging objective in digital holography, which otherwise hinders the phase contrast imaging at reconstruction planes. The unwanted curvature is compensated by evaluating a correcting wave front at the hologram plane with no need for knowledge of the optical parameters, focal length of the imaging lens, or distances in the setup. Most importantly it is shown that a correction effect can be obtained at all reconstruction planes. Three different methods have been applied to evaluate the correction wave front and the methods are discussed in detail. The proposed approach is demonstrated by applying digital holography as a method of coherent microscopy for imaging amplitude and phase contrast of microstructures.
Citations
More filters
Journal ArticleDOI
TL;DR: It is shown that the metallocorrole Ga(tpfc)(SO3)2, which has a strong Soret band absorption, increases contrast in both amplitude and phase and facilitates tracking of Escherichia coli with minimal toxicity.
Abstract: Holographic microscopy is an emerging biological technique that provides amplitude and quantitative phase imaging, though the contrast provided by many cell types and organelles is low, and until now no dyes were known that increased contrast. Here we show that the metallocorrole Ga(tpfc)(SO_3H)_2, which has a strong Soret band absorption, increases contrast in both amplitude and phase and facilitates tracking of Escherichia coli with minimal toxicity. The change in phase contrast may be calculated from the dye-absorbance spectrum using the Kramers–Kronig relations, and represents a general principle that may be applied to any dye or cell type. This enables the use of holographic microscopy for all applications in which specific labeling is desired.

13 citations

Journal ArticleDOI
TL;DR: Simulation and experimental results demonstrate that the proposed multi-step phase-aberration-compensation method outperforms state-of-the-art approaches, and the compensation results are consistent with those obtained from the double-exposure method.
Abstract: Digital holographic microscopy (DHM) is a well-known powerful technique allowing measurement of the spatial distributions of both the amplitude and phase produced by a transparent sample. Nevertheless, in order to improve the transverse resolution of the DHM system, a microscope objective has to be introduced in the object beam path, which inevitably leads to phase aberration in the object wavefront. In recent decades, a multitude of techniques have been proposed to compensate for this phase aberration, and the principal component analysis (PCA) technique has proven to be one of the most promising approaches due to its high compensation accuracy, low computational complexity, and simplicity to implement. However, when it comes to high-order phase aberration, which is common for a mal-aligned DHM system, the PCA technique usually performs poorly since it is unable to fit the cross-terms of the standard Zernike polynomials. To address this problem, here we propose a multi-step phase-aberration-compensation method based on optimal PCA and sub-sampling where PCA is first applied to remove the non-cross-aberration terms, followed by sub-sampled fitting for the remaining cross-aberration correction. The key advantage of our approach is that it can handle both the conventional objective phase curvature and high-order aberrations such as astigmatism and anamorphism with very little computational overhead. Simulation and experimental results demonstrate that our method outperforms state-of-the-art approaches, and the compensation results are consistent with those obtained from the double-exposure method.

13 citations

Journal ArticleDOI
TL;DR: Experimental results showed that parallel phase-shifting digital holography is very useful and suitable for sound field imaging, and can implement the imaging of the sound field successfully.
Abstract: Sound field imaging techniques have been found very useful for acoustic designs. Building on this idea, innovative techniques are needed and presented in this paper, where we report on developed imaging of the sound field radiated from speakers by parallel phase-shifting digital holography. We adopted an ultrasonic wave radiated from a speaker for an object. The phase distribution of the light wave was modulated by the sound field radiated from the speaker. The modulated phase distribution was recorded in the form of multiplexed phase-shifted holograms at the frame rate of 100,000 fps. A 40,000 Hz sound field radiated from a speaker is used as an observation target. Our proposed method can implement the imaging of the sound field successfully. Also, in order to demonstrate the digital refocusing capability of digital holography, we set two speakers, whose difference in depth positions was 6.6 cm, as a long-depth object. We demonstrated the digital refocusing on the two speakers along with the capability of measuring the positions of the objects. Furthermore, we succeeded in imaging of 40,000 Hz and 41,000 Hz sound fields radiated from the two speakers. The presented experimental results showed that parallel phase-shifting digital holography is very useful and suitable for sound field imaging.

13 citations

Proceedings ArticleDOI
22 Jun 2015
TL;DR: In this article, an optimized algorithm suitable for studies of dynamic processes in biological media on microscopic level has been developed for monitoring of nonradiative deactivation processes occurring in onion cell specimens at photosensitized generation of singlet oxygen.
Abstract: Digital holography is widely used nowadays for interferometric studies of various objects and processes. However, peculiarities of objects under study often imply difficulties in holograms recording, reconstruction and processing. One of the major factors is a typically large number of singular points at phase distributions caused by either low signal to noise ratio at the recorded holograms or sample inhomogeneities. The basic operations applied for absolute phase extracting from digital holograms are noise filtration, phase unwrapping and subtraction of phase distributions. In this paper we demonstrate that the sequence of these operations may drastically affect the resulting image quality and the data obtained. An optimized algorithm suitable for studies of dynamic processes in biological media on microscopic level has been developed. The algorithm was applied for monitoring of nonradiative deactivation processes occurring in onion cell specimens at photosensitized generation of singlet oxygen.

13 citations


Cites methods from "Compensation of the inherent wave f..."

  • ...The spherical phase factor is eliminated by means of an optical correction using a tube lens [14] and through the numerical procedure of background subtraction [15]....

    [...]

Journal ArticleDOI
TL;DR: A novel technique of digital holography using digitally implemented diffraction-free vortices for a precise three-dimensional localization of point-like objects and its flexibility presented by controlled variations of the localization sensitivity is presented.
Abstract: We present a novel technique of digital holography using digitally implemented diffraction-free vortices for a precise three-dimensional (3D) localization of point-like objects. The localization is realized by the processing of the holographic image reconstructed at arbitrarily selected plane. Separating a single radial component of the spatial spectrum and modulating its phase by a virtual spiral mask, the holographic images of individual object points are transformed to the image structures analogous to the diffraction-free vortex beams. The real part of the complex amplitude of the digital vortices creates the shape-invariant patterns rotating due to a defocusing. Determining the angular rotation, the axial positions of the individual point objects are specified over a wide axial range. In the proposed method, a single in-line hologram is processed without phase shifting and multiplane reconstruction, so that a dynamic localization and tracking of particles becomes possible. The principle of the method is presented in a unified computational model valid for both coherent and incoherent techniques of digital holography. The functionality of the method has been verified in experiments of the Fresnel incoherent correlation holography (FINCH) and its flexibility presented by controlled variations of the localization sensitivity. The application potential has been demonstrated by the defocusing image rotation of fixed fluorescent microspheres and the 3D localization and tracking of moving polystyrene beads resulting in the trajectory reconstruction of a selected particle.

13 citations

References
More filters
Journal ArticleDOI
TL;DR: A new method is proposed in which the distribution of complex amplitude at a plane is measured by phase-shifting interferometry and then Fresnel transformed by a digital computer, which can reconstruct an arbitrary cross section of a three-dimensional object with higher image quality and a wider viewing angle than from conventional digital holography using an off-axis configuration.
Abstract: A new method for three-dimensional image formation is proposed in which the distribution of complex amplitude at a plane is measured by phase-shifting interferometry and then Fresnel transformed by a digital computer. The method can reconstruct an arbitrary cross section of a three-dimensional object with higher image quality and a wider viewing angle than from conventional digital holography using an off-axis configuration. Basic principles and experimental verification are described.

1,813 citations

Journal ArticleDOI
TL;DR: The principle of recording holograms directly on a CCD target is described and a real image of the object is reconstructed from the digitally sampled hologram by means of numerical methods.
Abstract: The principle of recording holograms directly on a CCD target is described. A real image of the object is reconstructed from the digitally sampled hologram by means of numerical methods.

1,444 citations

Journal ArticleDOI
TL;DR: A new application of digital holography for phase-contrast imaging and optical metrology and an application to surface profilometry shows excellent agreement with contact-stylus probe measurements.
Abstract: We present a new application of digital holography for phase-contrast imaging and optical metrology. This holographic imaging technique uses a CCD camera for recording of a digital Fresnel off-axis hologram and a numerical method for hologram reconstruction. The method simultaneously provides an amplitude-contrast image and a quantitative phase-contrast image. An application to surface profilometry is presented and shows excellent agreement with contact-stylus probe measurements.

1,202 citations

Journal ArticleDOI
TL;DR: Off-axis holograms recorded with a magnified image of microscopic objects are numerically reconstructed in amplitude and phase by calculation of scalar diffraction in the Fresnel approximation to show that the transverse resolution is equal to the diffraction limit of the imaging system.
Abstract: We present a digital method for holographic microscopy involving a CCD camera as a recording device. Off-axis holograms recorded with a magnified image of microscopic objects are numerically reconstructed in amplitude and phase by calculation of scalar diffraction in the Fresnel approximation. For phase-contrast imaging the reconstruction method involves the computation of a digital replica of the reference wave. A digital method for the correction of the phase aberrations is presented. We present a detailed description of the reconstruction procedure and show that the transverse resolution is equal to the diffraction limit of the imaging system.

1,174 citations

Journal ArticleDOI
TL;DR: The principles and major applications of digital recording and numerical reconstruction of holograms (digital holography) are described, which are applied to measure shape and surface deformation of opaque bodies and refractive index fields within transparent media.
Abstract: This article describes the principles and major applications of digital recording and numerical reconstruction of holograms (digital holography). Digital holography became feasible since charged coupled devices (CCDs) with suitable numbers and sizes of pixels and computers with sufficient speed became available. The Fresnel or Fourier holograms are recorded directly by the CCD and stored digitally. No film material involving wet-chemical or other processing is necessary. The reconstruction of the wavefield, which is done optically by illumination of a hologram, is performed by numerical methods. The numerical reconstruction process is based on the Fresnel–Kirchhoff integral, which describes the diffraction of the reconstructing wave at the micro-structure of the hologram. In the numerical reconstruction process not only the intensity, but also the phase distribution of the stored wavefield can be computed from the digital hologram. This offers new possibilities for a variety of applications. Digital holography is applied to measure shape and surface deformation of opaque bodies and refractive index fields within transparent media. Further applications are imaging and microscopy, where it is advantageous to refocus the area under investigation by numerical methods.

1,171 citations