scispace - formally typeset
Open AccessJournal ArticleDOI

Complex networks: Structure and dynamics

Reads0
Chats0
TLDR
The major concepts and results recently achieved in the study of the structure and dynamics of complex networks are reviewed, and the relevant applications of these ideas in many different disciplines are summarized, ranging from nonlinear science to biology, from statistical mechanics to medicine and engineering.
About
This article is published in Physics Reports.The article was published on 2006-02-01 and is currently open access. It has received 9441 citations till now. The article focuses on the topics: Network dynamics & Complex network.

read more

Figures
Citations
More filters
Journal ArticleDOI

Complex brain networks: graph theoretical analysis of structural and functional systems

TL;DR: This article reviews studies investigating complex brain networks in diverse experimental modalities and provides an accessible introduction to the basic principles of graph theory and highlights the technical challenges and key questions to be addressed by future developments in this rapidly moving field.
Journal ArticleDOI

Complex network measures of brain connectivity: uses and interpretations.

TL;DR: Construction of brain networks from connectivity data is discussed and the most commonly used network measures of structural and functional connectivity are described, which variously detect functional integration and segregation, quantify centrality of individual brain regions or pathways, and test resilience of networks to insult.
Journal ArticleDOI

Community detection in graphs

TL;DR: A thorough exposition of community structure, or clustering, is attempted, from the definition of the main elements of the problem, to the presentation of most methods developed, with a special focus on techniques designed by statistical physicists.
Journal ArticleDOI

Community detection in graphs

TL;DR: A thorough exposition of the main elements of the clustering problem can be found in this paper, with a special focus on techniques designed by statistical physicists, from the discussion of crucial issues like the significance of clustering and how methods should be tested and compared against each other, to the description of applications to real networks.
References
More filters
Book

Introduction to Phase Transitions and Critical Phenomena

TL;DR: In this article, the authors present a paperback edition of a distinguished book, originally published by Clarendon Press in 1971, which is at the level at which a graduate student who has studied condensed matter physics can begin to comprehend the nature of phase transitions, which involve the transformation of one state of matter into another.
Journal ArticleDOI

Assortative mixing in networks.

TL;DR: This work proposes a model of an assortatively mixed network and finds that networks percolate more easily if they are assortative and that they are also more robust to vertex removal.
Book

Theory of Self-Reproducing Automata

TL;DR: This invention relates to prefabricated buildings and comprises a central unit having a peripheral section therearound to form a main residential part defined by an assembly of juxtaposed roofing and facing trusses.
Journal ArticleDOI

Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain

TL;DR: The mathematical theory of the method is explained in detail, followed by a thorough description of MEG instrumentation, data analysis, and practical construction of multi-SQUID devices.
Journal ArticleDOI

The large-scale organization of metabolic networks

TL;DR: In this paper, the authors present a systematic comparative mathematical analysis of the metabolic networks of 43 organisms representing all three domains of life, and show that despite significant variation in their individual constituents and pathways, these metabolic networks have the same topological scaling properties and show striking similarities to the inherent organization of complex non-biological systems.
Frequently Asked Questions (1)
Q1. What are the contributions in "Complex networks: structure and dynamics" ?

The authors review the major concepts and results recently achieved in the study of the structure and dynamics of complex networks, and summarize the relevant applications of these ideas in many different disciplines, ranging from nonlinear science to biology, from statistical mechanics to medicine and engineering.