scispace - formally typeset
Search or ask a question
BookDOI

Complexity and Approximation

About: The article was published on 1999-01-01. It has received 980 citations till now. The article focuses on the topics: Hardness of approximation & Average-case complexity.
Citations
More filters
Book ChapterDOI
04 Oct 2019
TL;DR: Permission to copy without fee all or part of this material is granted provided that the copies arc not made or distributed for direct commercial advantage.
Abstract: Usually, a proof of a theorem contains more knowledge than the mere fact that the theorem is true. For instance, to prove that a graph is Hamiltonian it suffices to exhibit a Hamiltonian tour in it; however, this seems to contain more knowledge than the single bit Hamiltonian/non-Hamiltonian.In this paper a computational complexity theory of the “knowledge” contained in a proof is developed. Zero-knowledge proofs are defined as those proofs that convey no additional knowledge other than the correctness of the proposition in question. Examples of zero-knowledge proof systems are given for the languages of quadratic residuosity and 'quadratic nonresiduosity. These are the first examples of zero-knowledge proofs for languages not known to be efficiently recognizable.

1,962 citations

Book
05 Aug 2002
TL;DR: Digraphs is an essential, comprehensive reference for undergraduate and graduate students, and researchers in mathematics, operations research and computer science, and it will also prove invaluable to specialists in related areas, such as meteorology, physics and computational biology.
Abstract: The theory of directed graphs has developed enormously over recent decades, yet this book (first published in 2000) remains the only book to cover more than a small fraction of the results. New research in the field has made a second edition a necessity. Substantially revised, reorganised and updated, the book now comprises eighteen chapters, carefully arranged in a straightforward and logical manner, with many new results and open problems. As well as covering the theoretical aspects of the subject, with detailed proofs of many important results, the authors present a number of algorithms, and whole chapters are devoted to topics such as branchings, feedback arc and vertex sets, connectivity augmentations, sparse subdigraphs with prescribed connectivity, and also packing, covering and decompositions of digraphs. Throughout the book, there is a strong focus on applications which include quantum mechanics, bioinformatics, embedded computing, and the travelling salesman problem. Detailed indices and topic-oriented chapters ease navigation, and more than 650 exercises, 170 figures and 150 open problems are included to help immerse the reader in all aspects of the subject. Digraphs is an essential, comprehensive reference for undergraduate and graduate students, and researchers in mathematics, operations research and computer science. It will also prove invaluable to specialists in related areas, such as meteorology, physics and computational biology.

1,938 citations


Cites background from "Complexity and Approximation"

  • ...For a wealth of information on NP-hard optimization problems and their approximability properties, see the book [33] by Ausiello, Crescenzi, Gambosi, Kann, Marchetti-Spaccamela and Protasi....

    [...]

Journal ArticleDOI
TL;DR: A complete view of the current state of the art with respect to layout problems from an algorithmic point of view is presented.
Abstract: Graph layout problems are a particular class of combinatorial optimization problems whose goal is to find a linear layout of an input graph in such way that a certain objective cost is optimized. This survey considers their motivation, complexity, approximation properties, upper and lower bounds, heuristics and probabilistic analysis on random graphs. The result is a complete view of the current state of the art with respect to layout problems from an algorithmic point of view.

665 citations

Book ChapterDOI
TL;DR: This note is intended as companion to the lecture at CONF 2000, mainly to give pointers to the appropriate references.
Abstract: One of the most flourishing areas of research in the design and analysis of approximation algorithms has been for facility location problems. In particular, for the metric case of two simple models, the uncapacitated facility location and the k-median problems, there are now a variety of techniques that yield constant performance guarantees. These methods include LP rounding, primal-dual algorithms, and local search techniques. Furthermore, the salient ideas in these algorithms and their analyzes are simple-to-explain and reflect a surprising degree of commonality. This note is intended as companion to our lecture at CONF 2000, mainly to give pointers to the appropriate references.

499 citations

Book
25 Oct 2011
TL;DR: This talk introduces basic concepts from cooperative game theory, and in particular the key solution concepts: the core and the Shapley value, and introduces the key issues that arise if one is to consider the cooperative games in a computational setting.
Abstract: The theory of cooperative games provides a rich mathematical framework with which to understand the interactions between self-interested agents in settings where they can benefit from cooperation, and where binding agreements between agents can be made. Our aim in this talk is to describe the issues that arise when we consider cooperative game theory through a computational lens. We begin by introducing basic concepts from cooperative game theory, and in particular the key solution concepts: the core and the Shapley value. We then introduce the key issues that arise if one is to consider the cooperative games in a computational setting: in particular, the issue of representing games, and the computational complexity of cooperative solution concepts.

395 citations

References
More filters
Book
01 Sep 1988
TL;DR: In this article, the authors present the computer techniques, mathematical tools, and research results that will enable both students and practitioners to apply genetic algorithms to problems in many fields, including computer programming and mathematics.
Abstract: From the Publisher: This book brings together - in an informal and tutorial fashion - the computer techniques, mathematical tools, and research results that will enable both students and practitioners to apply genetic algorithms to problems in many fields Major concepts are illustrated with running examples, and major algorithms are illustrated by Pascal computer programs No prior knowledge of GAs or genetics is assumed, and only a minimum of computer programming and mathematics background is required

52,797 citations

Journal ArticleDOI
13 May 1983-Science
TL;DR: There is a deep and useful connection between statistical mechanics and multivariate or combinatorial optimization (finding the minimum of a given function depending on many parameters), and a detailed analogy with annealing in solids provides a framework for optimization of very large and complex systems.
Abstract: There is a deep and useful connection between statistical mechanics (the behavior of systems with many degrees of freedom in thermal equilibrium at a finite temperature) and multivariate or combinatorial optimization (finding the minimum of a given function depending on many parameters). A detailed analogy with annealing in solids provides a framework for optimization of the properties of very large and complex systems. This connection to statistical mechanics exposes new information and provides an unfamiliar perspective on traditional optimization problems and methods.

41,772 citations

Book
01 Jan 1979
TL;DR: The second edition of a quarterly column as discussed by the authors provides a continuing update to the list of problems (NP-complete and harder) presented by M. R. Garey and myself in our book "Computers and Intractability: A Guide to the Theory of NP-Completeness,” W. H. Freeman & Co., San Francisco, 1979.
Abstract: This is the second edition of a quarterly column the purpose of which is to provide a continuing update to the list of problems (NP-complete and harder) presented by M. R. Garey and myself in our book ‘‘Computers and Intractability: A Guide to the Theory of NP-Completeness,’’ W. H. Freeman & Co., San Francisco, 1979 (hereinafter referred to as ‘‘[G&J]’’; previous columns will be referred to by their dates). A background equivalent to that provided by [G&J] is assumed. Readers having results they would like mentioned (NP-hardness, PSPACE-hardness, polynomial-time-solvability, etc.), or open problems they would like publicized, should send them to David S. Johnson, Room 2C355, Bell Laboratories, Murray Hill, NJ 07974, including details, or at least sketches, of any new proofs (full papers are preferred). In the case of unpublished results, please state explicitly that you would like the results mentioned in the column. Comments and corrections are also welcome. For more details on the nature of the column and the form of desired submissions, see the December 1981 issue of this journal.

40,020 citations

Proceedings ArticleDOI
03 May 1971
TL;DR: It is shown that any recognition problem solved by a polynomial time-bounded nondeterministic Turing machine can be “reduced” to the problem of determining whether a given propositional formula is a tautology.
Abstract: It is shown that any recognition problem solved by a polynomial time-bounded nondeterministic Turing machine can be “reduced” to the problem of determining whether a given propositional formula is a tautology. Here “reduced” means, roughly speaking, that the first problem can be solved deterministically in polynomial time provided an oracle is available for solving the second. From this notion of reducible, polynomial degrees of difficulty are defined, and it is shown that the problem of determining tautologyhood has the same polynomial degree as the problem of determining whether the first of two given graphs is isomorphic to a subgraph of the second. Other examples are discussed. A method of measuring the complexity of proof procedures for the predicate calculus is introduced and discussed.

6,675 citations


"Complexity and Approximation" refers methods in this paper

  • ...The proof of Cook-Levin's theorem has been given in [Cook, 1971], and independently in [Levin, 1973]....

    [...]

  • ...The theory of Np-completeness is one of the bases for the topics developed in this textbook: the original concept of Np-complete problems has been introduced independently in [Cook, 1971], where SATISFIABILITY was proved to be Np-complete, and in [Levin, 1973]....

    [...]