scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Complexity measures and decision tree complexity: a survey

09 Oct 2002-Theoretical Computer Science (Elsevier)-Vol. 288, Iss: 1, pp 21-43
TL;DR: Several complexity measures for Boolean functions are discussed: certificate complexity, sensitivity, block sensitivity, and the degree of a representing or approximating polynomial, and how they give bounds for the decision tree complexity of Boolean functions on deterministic, randomized, and quantum computers.
About: This article is published in Theoretical Computer Science.The article was published on 2002-10-09 and is currently open access. It has received 767 citations till now. The article focuses on the topics: Decision tree model & Worst-case complexity.
Citations
More filters
MonographDOI
20 Apr 2009
TL;DR: This beginning graduate textbook describes both recent achievements and classical results of computational complexity theory and can be used as a reference for self-study for anyone interested in complexity.
Abstract: This beginning graduate textbook describes both recent achievements and classical results of computational complexity theory. Requiring essentially no background apart from mathematical maturity, the book can be used as a reference for self-study for anyone interested in complexity, including physicists, mathematicians, and other scientists, as well as a textbook for a variety of courses and seminars. More than 300 exercises are included with a selected hint set.

2,965 citations

Journal ArticleDOI
TL;DR: An O(N/sup k/(k+1)/) query quantum algorithm is given for the generalization of element distinctness in which the authors have to find k equal items among N items.
Abstract: We use quantum walks to construct a new quantum algorithm for element distinctness and its generalization. For element distinctness (the problem of finding two equal items among $N$ given items), we get an $O(N^{2/3})$ query quantum algorithm. This improves the previous $O(N^{3/4})$ quantum algorithm of Buhrman et al. [SIAM J. Comput., 34 (2005), pp. 1324-1330] and matches the lower bound of Aaronson and Shi [J. ACM, 51 (2004), pp. 595-605]. We also give an $O(N^{k/(k+1)})$ query quantum algorithm for the generalization of element distinctness in which we have to find $k$ equal items among $N$ items.

593 citations


Cites methods from "Complexity measures and decision tr..."

  • ...Our model is the quantum query model (for surveys on query mod el, see [7, 18])....

    [...]

Journal ArticleDOI
TL;DR: This work examines the number of queries to input variables that a quantum algorithm requires to compute Boolean functions on {0,1}N in the black-box model and gives asymptotically tight characterizations of T for all symmetric f in the exact, zero-error, and bounded-error settings.
Abstract: We examine the number of queries to input variables that a quantum algorithm requires to compute Boolean functions on {0,1}N in the black-box model. We show that the exponential quantum speed-up obtained for partial functions (i.e., problems involving a promise on the input) by Deutsch and Jozsa, Simon, and Shor cannot be obtained for any total function: if a quantum algorithm computes some total Boolean function f with small error probability using T black-box queries, then there is a classical deterministic algorithm that computes f exactly with O(Ts6) queries. We also give asymptotically tight characterizations of T for all symmetric f in the exact, zero-error, and bounded-error settings. Finally, we give new precise bounds for AND, OR, and PARITY. Our results are a quantum extension of the so-called polynomial method, which has been successfully applied in classical complexity theory, and also a quantum extension of results by Nisan about a polynomial relationship between randomized and deterministic decision tree complexity.

590 citations

Posted Content
TL;DR: In this article, the authors used quantum walks to construct a new O(n 2/3 ) query quantum algorithm for element distinctness and its generalization, which was later improved to O(k/(k+1) ).
Abstract: We use quantum walks to construct a new quantum algorithm for element distinctness and its generalization. For element distinctness (the problem of finding two equal items among N given items), we get an O(N^{2/3}) query quantum algorithm. This improves the previous O(N^{3/4}) query quantum algorithm of Buhrman et.al. (quant-ph/0007016) and matches the lower bound by Shi (quant-ph/0112086). The algorithm also solves the generalization of element distinctness in which we have to find k equal items among N items. For this problem, we get an O(N^{k/(k+1)}) query quantum algorithm.

524 citations

Posted Content
TL;DR: In this article, it was shown that the exponential quantum speed-up obtained for partial functions (i.e., problems involving a promise on the input) by Deutsch and Jozsa and by Simon cannot be obtained for any total function, and that there is a classical deterministic algorithm that computes some total Boolean function f with bounded-error using T black-box queries.
Abstract: We examine the number T of queries that a quantum network requires to compute several Boolean functions on {0,1}^N in the black-box model. We show that, in the black-box model, the exponential quantum speed-up obtained for partial functions (i.e. problems involving a promise on the input) by Deutsch and Jozsa and by Simon cannot be obtained for any total function: if a quantum algorithm computes some total Boolean function f with bounded-error using T black-box queries then there is a classical deterministic algorithm that computes f exactly with O(T^6) queries. We also give asymptotically tight characterizations of T for all symmetric f in the exact, zero-error, and bounded-error settings. Finally, we give new precise bounds for AND, OR, and PARITY. Our results are a quantum extension of the so-called polynomial method, which has been successfully applied in classical complexity theory, and also a quantum extension of results by Nisan about a polynomial relationship between randomized and deterministic decision tree complexity.

522 citations

References
More filters
Book
01 Jan 2000
TL;DR: In this article, the quantum Fourier transform and its application in quantum information theory is discussed, and distance measures for quantum information are defined. And quantum error-correction and entropy and information are discussed.
Abstract: Part I Fundamental Concepts: 1 Introduction and overview 2 Introduction to quantum mechanics 3 Introduction to computer science Part II Quantum Computation: 4 Quantum circuits 5 The quantum Fourier transform and its application 6 Quantum search algorithms 7 Quantum computers: physical realization Part III Quantum Information: 8 Quantum noise and quantum operations 9 Distance measures for quantum information 10 Quantum error-correction 11 Entropy and information 12 Quantum information theory Appendices References Index

25,929 citations

01 Dec 2010
TL;DR: This chapter discusses quantum information theory, public-key cryptography and the RSA cryptosystem, and the proof of Lieb's theorem.
Abstract: Part I. Fundamental Concepts: 1. Introduction and overview 2. Introduction to quantum mechanics 3. Introduction to computer science Part II. Quantum Computation: 4. Quantum circuits 5. The quantum Fourier transform and its application 6. Quantum search algorithms 7. Quantum computers: physical realization Part III. Quantum Information: 8. Quantum noise and quantum operations 9. Distance measures for quantum information 10. Quantum error-correction 11. Entropy and information 12. Quantum information theory Appendices References Index.

14,825 citations


"Complexity measures and decision tr..." refers background or methods in this paper

  • ...There is an extensive literature on how such large U can be obtained from small unitary transformations (“quantum gates”) on few qubits at a time, see [30]....

    [...]

  • ...We brieLy sketch the framework of quantum computing, referring to [30] for more details....

    [...]

Proceedings ArticleDOI
Lov K. Grover1
01 Jul 1996
TL;DR: In this paper, it was shown that a quantum mechanical computer can solve integer factorization problem in a finite power of O(log n) time, where n is the number of elements in a given integer.
Abstract: were proposed in the early 1980’s [Benioff80] and shown to be at least as powerful as classical computers an important but not surprising result, since classical computers, at the deepest level, ultimately follow the laws of quantum mechanics. The description of quantum mechanical computers was formalized in the late 80’s and early 90’s [Deutsch85][BB92] [BV93] [Yao93] and they were shown to be more powerful than classical computers on various specialized problems. In early 1994, [Shor94] demonstrated that a quantum mechanical computer could efficiently solve a well-known problem for which there was no known efficient algorithm using classical computers. This is the problem of integer factorization, i.e. testing whether or not a given integer, N, is prime, in a time which is a finite power of o (logN) . ----------------------------------------------

6,335 citations

Journal ArticleDOI
TL;DR: Concrete Mathematics as discussed by the authors is a collection of techniques for solving problems in computer science, and it is an indispensable text and reference not only for computer scientists - the authors themselves rely heavily on it! - but for serious users of mathematics in virtually every discipline.
Abstract: From the Publisher: This book introduces the mathematics that supports advanced computer programming and the analysis of algorithms. The primary aim of its well-known authors is to provide a solid and relevant base of mathematical skills - the skills needed to solve complex problems, to evaluate horrendous sums, and to discover subtle patterns in data. It is an indispensable text and reference not only for computer scientists - the authors themselves rely heavily on it! - but for serious users of mathematics in virtually every discipline. Concrete Mathematics is a blending of CONtinuous and disCRETE mathematics. \"More concretely,\" the authors explain, \"it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems.\" The subject matter is primarily an expansion of the Mathematical Preliminaries section in Knuth's classic Art of Computer Programming, but the style of presentation is more leisurely, and individual topics are covered more deeply. Several new topics have been added, and the most significant ideas have been traced to their historical roots. The book includes more than 500 exercises, divided into six categories. Complete answers are provided for all exercises, except research problems, making the book particularly valuable for self-study. Major topics include: Sums Recurrences Integer functions Elementary number theory Binomial coefficients Generating functions Discrete probability Asymptotic methods This second edition includes important new material about mechanical summation. In response to the widespread use ofthe first edition as a reference book, the bibliography and index have also been expanded, and additional nontrivial improvements can be found on almost every page. Readers will appreciate the informal style of Concrete Mathematics. Particularly enjoyable are the marginal graffiti contributed by students who have taken courses based on this material. The authors want to convey not only the importance of the techniques presented, but some of the fun in learning and using them.

2,307 citations

Book
01 Jan 1991
TL;DR: This chapter discusses Circuits and other Non-Uniform Computation Methods vs. Turing Machines and other Uniform Computation Models, and the Design of Efficient Circuits for Some Fundamental Functions.
Abstract: Introduction to the Theory of Boolean Functions and Circuits. The Minimimization of Boolean Functions. The Design of Efficient Circuits for Some Fundamental Functions. Asymptotic Results and Universal Circuits. Lower Bounds on Circuit Complexity. Monotone Circuits. Relations between Circuit Size, Formula Size and Depth. Formula Size. Circuits and other Non-Uniform Computation Methods vs. Turing Machines and other Uniform Computation Models. Hierarchies, Mass Production, and Reductions. Bounded-Depth Circuits. Synchronous, Planar, and Probabilistic Circuits. PRAMs and WRAMs: Parallel Random Access Machines. Branching Programs. References. Index.

1,141 citations