scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Compositional Diversity in the Atmospheres of Hot Neptunes, with Application to GJ 436b

TL;DR: The predicted equilibrium and disequilibrium chemistry of generic hot Neptunes is explored and it is concluded that although the spectral fit from the high-metallicity forward models is not quite as good as the best fit obtained from pure retrieval methods, the atmospheric composition predicted is more physically and chemically plausible in terms of the relative abundance of major constituents.
Abstract: Neptune-sized extrasolar planets that orbit relatively close to their host stars—often called "hot Neptunes"—are common within the known population of exoplanets and planetary candidates. Similar to our own Uranus and Neptune, inefficient accretion of nebular gas is expected produce hot Neptunes whose masses are dominated by elements heavier than hydrogen and helium. At high atmospheric metallicities of 10-10,000 times solar, hot Neptunes will exhibit an interesting continuum of atmospheric compositions, ranging from more Neptune-like, H_2-dominated atmospheres to more Venus-like, CO_2-dominated atmospheres. We explore the predicted equilibrium and disequilibrium chemistry of generic hot Neptunes and find that the atmospheric composition varies strongly as a function of temperature and bulk atmospheric properties such as metallicity and the C/O ratio. Relatively exotic H_2O, CO, CO_2, and even O_2-dominated atmospheres are possible for hot Neptunes. We apply our models to the case of GJ 436b, where we find that a CO-rich, CH_4-poor atmosphere can be a natural consequence of a very high atmospheric metallicity. From comparisons of our results with Spitzer eclipse data for GJ 436b, we conclude that although the spectral fit from the high-metallicity forward models is not quite as good as the best fit obtained from pure retrieval methods, the atmospheric composition predicted by these forward models is more physically and chemically plausible in terms of the relative abundance of major constituents. High-metallicity atmospheres (orders of magnitude in excess of solar) should therefore be considered as a possibility for GJ 436b and other hot Neptunes.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors explore how well spectra from the James Webb Space Telescope (JWST) will likely constrain bulk atmospheric properties of transiting exoplanets.
Abstract: We explore how well spectra from the James Webb Space Telescope (JWST) will likely constrain bulk atmospheric properties of transiting exoplanets. We start by modeling the atmospheres of archetypal hot Jupiter, warm Neptune, warm sub-Neptune, and cool super-Earth planets with atmospheres that are clear, cloudy, or of high mean molecular weight (HMMW). Next we simulate the λ = 1–11 μm transmission and emission spectra of these systems for several JWST instrument modes for single-transit or single-eclipse events. We then perform retrievals to determine how well temperatures and molecular mixing ratios (CH4, CO, CO2, H2O, NH3) can be constrained. We find that λ = 1–2.5 μm transmission spectra will often constrain the major molecular constituents of clear solar-composition atmospheres well. Cloudy or HMMW atmospheres will often require full 1–11 μm spectra for good constraints, and emission data may be more useful in cases of sufficiently high Fp and high Fp/F*. Strong temperature inversions in the solar-composition hot-Jupiter atmosphere should be detectable with 1–2.5+ μm emission spectra, and 1–5+ μm emission spectra will constrain the temperature–pressure profiles of warm planets. Transmission spectra over 1–5+ μm will constrain [Fe/H] values to better than 0.5 dex for the clear atmospheres of the hot and warm planets studied. Carbon-to-oxygen ratios can be constrained to better than a factor of 2 in some systems. We expect that these results will provide useful predictions of the scientific value of single-event JWST spectra until its on-orbit performance is known.

473 citations

Journal ArticleDOI
02 Jan 2014-Nature
TL;DR: Observations of GJ 436b’s atmosphere obtained during transit indicate that the planet's transmission spectrum is featureless, ruling out cloud-free, hydrogen-dominated atmosphere models with an extremely high significance of 48σ.
Abstract: GJ 436b is a warm—approximately 800 kelvin—exoplanet that periodically eclipses its low-mass (half the mass of the Sun) host star, and is one of the few Neptune-mass planets that is amenable to detailed characterization. Previous observations have indicated that its atmosphere has a ratio of methane to carbon monoxide that is 10^5 times smaller than predicted by models for hydrogen-dominated atmospheres at these temperatures. A recent study proposed that this unusual chemistry could be explained if the planet’s atmosphere is significantly enhanced in elements heavier than hydrogen and helium. Here we report observations of GJ 436b’s atmosphere obtained during transit. The data indicate that the planet’s transmission spectrum is featureless, ruling out cloud-free, hydrogen-dominated atmosphere models with an extremely high significance of 48σ. The measured spectrum is consistent with either a layer of high cloud located at a pressure level of approximately one millibar or with a relatively hydrogen-poor (three per cent hydrogen and helium mass fraction) atmospheric composition.

358 citations

Journal ArticleDOI
TL;DR: In this article, the authors explore how well James Webb Space Telescope (JWST) spectra will likely constrain bulk atmospheric properties of transiting exoplanets, and they find that the JWST spectra can often constrain the major molecular constituents of clear solar composition atmospheres well.
Abstract: We explore how well James Webb Space Telescope (JWST) spectra will likely constrain bulk atmospheric properties of transiting exoplanets. We start by modeling the atmospheres of archetypal hot Jupiter, warm Neptune, warm sub-Neptune, and cool super-Earth planets with clear, cloudy, or high mean molecular weight atmospheres. Next we simulate the $\lambda = 1 - 11$ $\mu$m transmission and emission spectra of these systems for several JWST instrument modes for single transit and eclipse events. We then perform retrievals to determine how well temperatures and molecular mixing ratios (CH$_4$, CO, CO$_2$, H$_2$O, NH$_3$) can be constrained. We find that $\lambda = 1 - 2.5$ $\mu$m transmission spectra will often constrain the major molecular constituents of clear solar composition atmospheres well. Cloudy or high mean molecular weight atmospheres will often require full $1 - 11$ $\mu$m spectra for good constraints, and emission data may be more useful in cases of sufficiently high $F_p$ and high $F_p/F_*$. Strong temperature inversions in the solar composition hot Jupiter atmosphere should be detectable with $1 - 2.5+$ $\mu$m emission spectra, and $1 - 5+$ $\mu$m emission spectra will constrain the temperature-pressure profiles of warm planets. Transmission spectra over $1 - 5+$ $\mu$m will constrain [Fe/H] values to better than 0.5 dex for the clear atmospheres of the hot and warm planets studied. Carbon-to-oxygen ratios can be constrained to better than a factor of 2 in some systems. We expect that these results will provide useful predictions of the scientific value of single event JWST spectra until its on-orbit performance is known.

351 citations


Cites background from "Compositional Diversity in the Atmo..."

  • ...Certainly, photochemistry can produce species not included in this investigation (e.g., CmHn, HCN), especially in cooler planets in which CH4 is readily available for photolysis (Line et al. 2011; Venot et al. 2014; Moses et al. 2013; Hu & Seager 2014; Miller-Ricci Kempton et al. 2012)....

    [...]

Journal ArticleDOI
25 Sep 2014-Nature
TL;DR: Observations of the transmission spectrum of the exoplanet HAT-P-11b from the optical wavelength range to the infrared indicate that the planetary atmosphere is predominantly clear down to an altitude corresponding to about 1 millibar, and sufficiently rich in hydrogen to have a large scale height.
Abstract: Transmission spectroscopy has so far detected atomic and molecular absorption in Jupiter-sized exoplanets, but intense efforts to measure molecular absorption in the atmospheres of smaller (Neptune-sized) planets during transits have revealed only featureless spectra. From this it was concluded that the majority of small, warm planets evolve to sustain atmospheres with high mean molecular weights (little hydrogen), opaque clouds or scattering hazes, reducing our ability to observe the composition of these atmospheres. Here we report observations of the transmission spectrum of the exoplanet HAT-P-11b (which has a radius about four times that of Earth) from the optical wavelength range to the infrared. We detected water vapour absorption at a wavelength of 1.4 micrometres. The amplitude of the water absorption (approximately 250 parts per million) indicates that the planetary atmosphere is predominantly clear down to an altitude corresponding to about 1 millibar, and sufficiently rich in hydrogen to have a large scale height (over which the atmospheric pressure varies by a factor of e). The spectrum is indicative of a planetary atmosphere in which the abundance of heavy elements is no greater than about 700 times the solar value. This is in good agreement with the core-accretion theory of planet formation, in which a gas giant planet acquires its atmosphere by accreting hydrogen-rich gas directly from the protoplanetary nebula onto a large rocky or icy core.

308 citations

Journal ArticleDOI
TL;DR: The spectral properties of ultra hot Jupiters were investigated in this article, where the authors used the SPARC/MITgcm spectral model to model the atmospheres of the four ultra hot supergiants and discussed more thoroughly the case of WASP-121b.
Abstract: Context A new class of exoplanets has emerged: the ultra hot Jupiters, the hottest close-in gas giants. The majority of them have weaker-than-expected spectral features in the 1.1−1.7 μm bandpass probed by HST/WFC3 but stronger spectral features at longer wavelengths probed by Spitzer. This led previous authors to puzzling conclusions about the thermal structures and chemical abundances of these planets. Aims We investigate how thermal dissociation, ionization, H− opacity, and clouds shape the thermal structures and spectral properties of ultra hot Jupiters. Methods We use the SPARC/MITgcm to model the atmospheres of four ultra hot Jupiters and discuss more thoroughly the case of WASP-121b. We expand our findings to the whole population of ultra hot Jupiters through analytical quantification of the thermal dissociation and its influence on the strength of spectral features. Results We predict that most molecules are thermally dissociated and alkalies are ionized in the dayside photospheres of ultra hot Jupiters. This includes H2O, TiO, VO, and H2 but not CO, which has a stronger molecular bond. The vertical molecular gradient created by the dissociation significantly weakens the spectral features from H2O while the 4.5 μm CO feature remains unchanged. The water band in the HST/WFC3 bandpass is further weakened by the continuous opacity of the H− ions. Molecules are expected to recombine before reaching the limb, leading to order of magnitude variations of the chemical composition and cloud coverage between the limb and the dayside. Conclusions Molecular dissociation provides a qualitative understanding of the lack of strong spectral features of water in the 1−2 μm bandpass observed in most ultra hot Jupiters. Quantitatively, our model does not provide a satisfactory match to the WASP-121b emission spectrum. Together with WASP-33b and Kepler-33Ab, they seem the outliers among the population of ultra hot Jupiters, in need of a more thorough understanding.

294 citations

References
More filters
01 Jan 2005

3,070 citations

Journal ArticleDOI
01 Nov 1996-Icarus
TL;DR: In this article, the authors presented a self-consistent, interactive simulation of the formation of the giant planets, in which for the first time both the gas and planetesimal accretion rates were calculated in a selfconsistent and interactive fashion.

2,931 citations

Journal ArticleDOI
TL;DR: In this article, the effects of mean winds and gravity waves on the mean momentum budget were investigated and it was shown that the existence of critical levels in the mesosphere significantly limits the ability of gravity waves to generate turbulence.
Abstract: It has been suggested (Lindzen, 1967, 1968a, b; Lindzen and Blake, 1971; Hodges, 1969) that turbulence in the upper mesosphere arises from the unstable breakdown of tides and gravity waves. Crudely speaking, it was expected that sufficient turbulence would be generated to prevent the growth of wave amplitude with height (roughly as (basic pressure)−1/2). This work has been extended to allow for the generation of turbulence by smaller amplitude waves, the effects of mean winds on the waves, and the effects of the waves on the mean momentum budget. The effects of mean winds, while of relatively small importance for tides, are crucial for internal gravity waves originating in the troposphere. Winds in the troposphere and stratosphere sharply limit the phase speeds of waves capable of reaching the upper mesosphere. In addition, the existence of critical levels in the mesosphere significantly limits the ability of gravity waves to generate turbulence, while the breakdown of gravity waves contributes to the development of critical levels. The results of the present study suggest that at middle latitudes in winter, eddy coefficients may peak at relatively low altitudes (50 km) and at higher altitudes in summer and during sudden warmings (70–80 km), and decrease with height rather sharply above these levels. Rocket observations are used to estimate momentum deposition by gravity waves. Accelerations of about 100 m/s/day are suggested. Such accelerations are entirely capable of producing the warm winter and cold summer mesopauses.

1,967 citations


"Compositional Diversity in the Atmo..." refers background in this paper

  • ...…is expected to cause effective Kzz values to increase roughly with the inverse square root of atmospheric pressure in planetary stratospheres (e.g., Lindzen 1981, and references therein) — a scaling that appears consistent with inferred vertical mixing in exoplanet general circulation models…...

    [...]

01 Jun 1995

1,859 citations


"Compositional Diversity in the Atmo..." refers background in this paper

  • ...…Equilibrium for Generic Hot Neptunes With the core-accretion model of giant-planet formation (Mizuno et al. 1978; Bodenheimer & Pollack 1986; Pollack et al. 1996), a rocky or rock-ice protoplanetary core initially forms and grows from the accretion of solid planetesimals within a…...

    [...]

01 Oct 2015
TL;DR: This is the eighteenth in a series of evaluated sets of rate constants, photochemical cross sections, heterogeneous parameters, and thermochemical parameters compiled by the NASA Panel for Data Evaluation as mentioned in this paper.
Abstract: This is the eighteenth in a series of evaluated sets of rate constants, photochemical cross sections, heterogeneous parameters, and thermochemical parameters compiled by the NASA Panel for Data Evaluation. The data are used primarily to model stratospheric and upper tropospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena. The evaluation is available in electronic form from the following Internet URL: http://jpldataeval.jpl.nasa.gov/

1,830 citations