scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays

TL;DR: In this article, the authors proposed a method of modeling and simulation of photovoltaic arrays by adjusting the curve at three points: open circuit, maximum power, and short circuit.
Abstract: This paper proposes a method of modeling and simulation of photovoltaic arrays. The main objective is to find the parameters of the nonlinear I-V equation by adjusting the curve at three points: open circuit, maximum power, and short circuit. Given these three points, which are provided by all commercial array data sheets, the method finds the best I-V equation for the single-diode photovoltaic (PV) model including the effect of the series and parallel resistances, and warranties that the maximum power of the model matches with the maximum power of the real array. With the parameters of the adjusted I-V equation, one can build a PV circuit model with any circuit simulator by using basic math blocks. The modeling method and the proposed circuit model are useful for power electronics designers who need a simple, fast, accurate, and easy-to-use modeling method for using in simulations of PV systems. In the first pages, the reader will find a tutorial on PV devices and will understand the parameters that compose the single-diode PV model. The modeling method is then introduced and presented in details. The model is validated with experimental data of commercial PV arrays.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a design example is presented by experimental implementation of the proposed technique and practical results for the implemented setup at different irradiance levels are illustrated to validate the proposed scheme.
Abstract: Solar photovoltaic (PV) energy has witnessed double-digit growth in the past decade. The penetration of PV systems as distributed generators in low-voltage grids has also seen significant attention. In addition, the need for higher overall grid efficiency and reliability has boosted the interest in the microgrid concept. High-efficiency PV-based microgrids require maximum power point tracking (MPPT) controllers to maximize the harvested energy due to the nonlinearity in PV module characteristics. Perturb and observe (PO second, no steady-state oscillations around the MPP; and lastly, no need for predefined system-dependent constants, hence provides a generic design core. A design example is presented by experimental implementation of the proposed technique. Practical results for the implemented setup at different irradiance levels are illustrated to validate the proposed technique.

774 citations


Cites background from "Comprehensive Approach to Modeling ..."

  • ...Many researches investigate the PV array nonlinear behavior [8] and associated grid-connected inverters [9], [10]....

    [...]

Journal ArticleDOI
TL;DR: In this article, a fuzzy-logic controller for maximum power point tracking of photovoltaic (PV) systems is proposed, which improves the hill-climbing search method by fuzzifying the rules of such techniques and eliminates their drawbacks.
Abstract: A new fuzzy-logic controller for maximum power point tracking of photovoltaic (PV) systems is proposed. PV modeling is discussed. Conventional hill-climbing maximum power-point tracker structures and features are investigated. The new controller improves the hill-climbing search method by fuzzifying the rules of such techniques and eliminates their drawbacks. Fuzzy-logic-based hill climbing offers fast and accurate converging to the maximum operating point during steady-state and varying weather conditions compared to conventional hill climbing. Simulation and experimentation results are provided to demonstrate the validity of the proposed fuzzy-logic-based controller.

578 citations


Cites background from "Comprehensive Approach to Modeling ..."

  • ...Many different MPPT techniques have been proposed [25]....

    [...]

  • ...Unfortunately, PV systems suffer from three main problems: high fabrication cost, low conversion efficiency especially under variable weather conditions, and the nonlinearity between the PV array output power and current [25]....

    [...]

Journal ArticleDOI
TL;DR: The main contribution of this work is the simplification of the current equation, in which only four parameters are required, compared to six or more in the previously developed two-diode models.

571 citations

Journal ArticleDOI
TL;DR: In this paper, a classification scheme for MPPT methods based on three categories: offline, online and hybrid methods is introduced, which can provide a convenient reference for future work in PV power generation, is based on the manner in which the control signal is generated and the PV power system behavior as it approaches steady state conditions.
Abstract: In recent years there has been a growing attention towards use of solar energy. The main advantages of photovoltaic (PV) systems employed for harnessing solar energy are lack of greenhouse gas emission, low maintenance costs, fewer limitations with regard to site of installation and absence of mechanical noise arising from moving parts. However, PV systems suffer from relatively low conversion efficiency. Therefore, maximum power point tracking (MPPT) for the solar array is essential in a PV system. The nonlinear behavior of PV systems as well as variations of the maximum power point with solar irradiance level and temperature complicates the tracking of the maximum power point. A variety of MPPT methods have been proposed and implemented. This review paper introduces a classification scheme for MPPT methods based on three categories: offline, online and hybrid methods. This classification, which can provide a convenient reference for future work in PV power generation, is based on the manner in which the control signal is generated and the PV power system behavior as it approaches steady state conditions. Some of the methods from each class are simulated in Matlab/Simulink environment in order to compare their performance. Furthermore, different MPPT methods are discussed in terms of the dynamic response of the PV system to variations in temperature and irradiance, attainable efficiency, and implementation considerations.

549 citations


Cites background from "Comprehensive Approach to Modeling ..."

  • ...[6] Villalva MG, Gazoli JR, Filho ER....

    [...]

  • ...(1) describes the I–V characteristic of a solar panel [6]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a novel MPPT method capable of RMPPT under partially shaded conditions (PSCs) is proposed, which is analyzed according to the RMPP position and verified by simulation and experimental results.
Abstract: Conventional popular maximum power point tracking (MPPT) methods are effective under uniform solar irradiance. However, under solar irradiance mismatching conditions [partially shaded conditions (PSCs)], these MPPTs can fail for real MPPT (RMPPT), because multiple local maxima can be exhibited on the power-voltage characteristic curve. Although some researchers have worked on RMPPT under partial shading conditions, the methods have some drawbacks in terms of complexity and requirements for additional circuits, etc. In this paper, a novel MPPT method capable of RMPPT under PSCs is proposed. The performance of the proposed MPPT method is analyzed according to the RMPP position and is verified by simulation and experimental results.

473 citations

References
More filters
Journal ArticleDOI

40,330 citations


"Comprehensive Approach to Modeling ..." refers methods in this paper

  • ...This model offers a good compromise between simplicity and accuracy [20], and has been used by several authors in previous works, sometimes with simplifications but always with the basic structure composed of a current source and a parallel diode [12], [21]–[34]....

    [...]

Journal ArticleDOI
01 Jan 1995
TL;DR: In this article, the authors developed an incremental conductance (IncCond) algorithm to track the maximum power operating point (MPOP) of photovoltaic (PV) power generation systems.
Abstract: As the maximum power operating point (MPOP) of photovoltaic (PV) power generation systems changes with changing atmospheric conditions (e.g. solar radiation and temperature), an important consideration in the design of efficient PV systems is to track the MPOP correctly. Many maximum power tracking (MPT) techniques have been considered in the past but techniques using microprocessors with appropriate MPT algorithms are favoured because of their flexibility and compatibility with different PV arrays. Although the efficiency of these MPT algorithms is usually high, it drops noticeably in cases of rapidly changing atmospheric conditions. The authors have developed a new MPT algorithm based on the fact that the MPOP of a PV generator can be tracked accurately by comparing the incremental and instantaneous conductances of the PV array. The work was carried out by both simulation and experiment, with results showing that the developed incremental conductance (IncCond) algorithm has successfully tracked the MPOP, even in cases of rapidly changing atmospheric conditions, and has higher efficiency than ordinary algorithms in terms of total PV energy transferred to the load.

1,732 citations

Journal ArticleDOI
TL;DR: The five-parameter model is of interest because it requires only a small amount of input data available from the manufacturer and therefore it provides a valuable tool for energy prediction, and could be improved if manufacturer’s data included information at two radiation levels.

1,730 citations


"Comprehensive Approach to Modeling ..." refers background in this paper

  • ...Some values for a are found in [42] based on empirical analyses....

    [...]

  • ...The diode saturation current I0 and its dependence on the temperature may be expressed by as shown [42], [43], [45]–[48]:...

    [...]

  • ...depends linearly on the solar irradiation and is also influenced by the temperature according to the following equation [30], [42]–[44]:...

    [...]

  • ...12 eV for the polycrystalline Si at 25 ◦C [23], [42]), and I0,n is the nominal saturation current:...

    [...]

Book
01 Jan 1982

1,413 citations


"Comprehensive Approach to Modeling ..." refers background in this paper

  • ...A photovoltaic cell is basically a semiconductor diode whose p–n junction is exposed to light [1], [2]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a MATLAB-based modeling and simulation scheme is presented for studying the I-V and P-V characteristics of a PV array under a nonuniform insolation due to partial shading.
Abstract: The performance of a photovoltaic (PV) array is affected by temperature, solar insolation, shading, and array configuration. Often, the PV arrays get shadowed, completely or partially, by the passing clouds, neighboring buildings and towers, trees, and utility and telephone poles. The situation is of particular interest in case of large PV installations such as those used in distributed power generation schemes. Under partially shaded conditions, the PV characteristics get more complex with multiple peaks. Yet, it is very important to understand and predict them in order to extract the maximum possible power. This paper presents a MATLAB-based modeling and simulation scheme suitable for studying the I-V and P-V characteristics of a PV array under a nonuniform insolation due to partial shading. It can also be used for developing and evaluating new maximum power point tracking techniques, especially for partially shaded conditions. The proposed models conveniently interface with the models of power electronic converters, which is a very useful feature. It can also be used as a tool to study the effects of shading patterns on PV panels having different configurations. It is observed that, for a given number of PV modules, the array configuration (how many modules in series and how many in parallel) significantly affects the maximum available power under partially shaded conditions. This is another aspect to which the developed tool can be applied. The model has been experimentally validated and the usefulness of this research is highlighted with the help of several illustrations. The MATLAB code of the developed model is freely available for download.

1,139 citations