scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Comprehensive Review of Distributed FACTS Control Algorithms for Power Quality Enhancement in Utility Grid With Renewable Energy Penetration

TL;DR: A comprehensive review of various conventional and adaptive algorithms used to control DFACTS devices for improvement of power quality in utility grids with RE penetration is presented.
Abstract: Rapid industrialization and its automation on the globe demands increased generation of electrical energy with more reliability and quality. Renewable energy (RE) sources are considered as a green form of energy and extensively used as an alternative source of energy for conventional energy sources to meet the increased demand for electrical power. However, these sources, when integrated to the utility grid, pose challenges in maintaining the power quality (PQ) and stability of the power system network. This is due to the unpredictable and variable nature of generation by these sources. The distributed flexible AC transmission system (DFACTS) devices such as distributed static compensator (DSTATCOM) and dynamic voltage restorer (DVR) play an active role in mitigating PQ issues associated with RE penetration. The performance of DFACTS devices is mostly dependent on the type of control algorithms employed for switching of these devices. This paper presents a comprehensive review of various conventional and adaptive algorithms used to control DFACTS devices for improvement of power quality in utility grids with RE penetration. This review intends to provide a summary of the design, experimental hardware, performance and feasibility aspects of these algorithms reported in the literature. More than 170 research publications are critically reviewed, classified, and listed for quick reference for the advantage of engineers and academician working in this area.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: A critical review of techniques used for detection and classification PQ disturbances in the utility grid with renewable energy penetration is presented, to provide various concepts utilized for extraction of the features to detect and classify the P Q disturbances even in the noisy environment.
Abstract: The global concern with power quality is increasing due to the penetration of renewable energy (RE) sources to cater the energy demands and meet de-carbonization targets. Power quality (PQ) disturbances are found to be more predominant with RE penetration due to the variable outputs and interfacing converters. There is a need to recognize and mitigate PQ disturbances to supply clean power to the consumer. This article presents a critical review of techniques used for detection and classification PQ disturbances in the utility grid with renewable energy penetration. The broad perspective of this review paper is to provide various concepts utilized for extraction of the features to detect and classify the PQ disturbances even in the noisy environment. More than 220 research publications have been critically reviewed, classified and listed for quick reference of the engineers, scientists and academicians working in the power quality area.

104 citations


Cites background from "Comprehensive Review of Distributed..."

  • ...These classified disturbances are later mitigated in the mitigation stage using distributed flexible AC transmission system (DFACTS) devices [37]....

    [...]

Journal ArticleDOI
11 Aug 2020-Energies
TL;DR: A thorough discussion and comprehensive review of DVR topologies based on operations, power converters, control methods, and applications and the state-of-the-art in works of literature, and comparative study on power quality issues are provided.
Abstract: Power quality is a pressing concern and of the utmost importance for advanced and high-tech equipment in particular, whose performance relies heavily on the supply’s quality. Power quality issues like voltage sags/swells, harmonics, interruptions, etc. are defined as any deviations in current, voltage, or frequency that result in end-use equipment damage or failure. Sensitive loads like medical equipment in hospitals and health clinics, schools, prisons, etc. malfunction for the outages and interruptions, thereby causing substantial economic losses. For enhancing power quality, custom power devices (CPDs) are recommended, among which the Dynamic Voltage Restorer (DVR) is considered as the best and cost-effective solution. DVR is a power electronic-based solution to mitigate and compensate voltage sags. This paper provides a thorough discussion and comprehensive review of DVR topologies based on operations, power converters, control methods, and applications. The review compares the state-of-the-art in works of literature, and comparative study on power quality issues, the DVR principle along with its operation modes, the DVR components, the DVR topologies based on energy storage, the DVR topologies based on single-/three-phase power converters, and the DVR topologies based on control units that have different control processing stages. Furthermore, modified and improved configurations of the DVR, as well as its integration with distributed generations, are described. This work serves as a comprehensive and useful reference for those who have an interest in researching DVRs.

58 citations

Journal ArticleDOI
TL;DR: A critical one-stop handbook related to one hundred and four methods in six categories covering all kinds of networks and tailored applications for ESS selection, evaluation criteria, modelling and solution methods is provided.
Abstract: Energy storage system (ESS) has been expected to be a viable solution which can provide diverse benefits to different power system stakeholders, including generation side, transmission network (TN), distribution network (DN) and off-grid microgrid. Prudent ESS allocation in power grids determines satisfactory performance of ESS applications. Optimal sizing and placement of ESS are crucial for power quality improvement of DN and transmission system protection setting. To solve this issue, considerable researches have been done either in modelling or algorithms. However, various options and complex characteristics in different sub-systems make it difficult to appraise a specific method for an ESS application, while the existing reviews only focus on ESS applications in DN. This paper provides a critical one-stop handbook related to one hundred and four methods in six categories covering all kinds of networks and tailored applications. Meanwhile, a systematic methodology is presented with an extensive latest literature review, including ESS selection, evaluation criteria, modelling and solution methods. Particularly, different technical requirements and modelling methods of different sub-systems are outlined. Besides, pros and cons of optimization methods are thoroughly analysed and compared to reveal state-of-the-art studies. Finally, key points in optimal ESS sizing and placement are concluded along with recommendations for future research.

52 citations

Journal ArticleDOI
TL;DR: In this article, the authors compare and relate prior and latest developments on PQ and stability challenges and their solutions and highlight the recommendations and future trends for PQ improvement are highlighted at the end.
Abstract: Recently, the penetration of renewable energy sources (RESs) into electrical power systems is witnessing a large attention due to their inexhaustibility, environmental benefits, storage capabilities, lower maintenance and stronger economy, etc. Among these RESs, offshore wind power plants (OWPP) are ones of the most widespread power plants that have emerged with regard to being competitive with other energy technologies. However, the application of power electronic converters (PECs), offshore transmission lines and large substation transformers result in considerable power quality (PQ) issues in grid connected OWPP. Moreover, due to the installation of filters for each OWPP, some other challenges such as voltage and frequency stability arise. In this regard, various customs power devices along with integration control methodologies have been implemented to deal with stated issues. Furthermore, for a smooth and reliable operation of the system, each country established various grid codes. Although various mitigation schemes and related standards for OWPP are documented separately, a comprehensive review covering these aspects has not yet addressed in the literature. The objective of this study is to compare and relate prior as well as latest developments on PQ and stability challenges and their solutions. Low voltage ride through (LVRT) schemes and associated grid codes prevalent for the interconnection of OWPP based power grid have been deliberated. In addition, various PQ issues and mitigation options such as FACTS based filters, DFIG based adaptive and conventional control algorithms, ESS based methods and LVRT requirements have been summarized and compared. Finally, recommendations and future trends for PQ improvement are highlighted at the end.

34 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a nonlinear adaptive backstepping control technique applied to a DFIG based wind system and an optimization technique that uses the rooted tree optimization (RTO) algorithm.
Abstract: With the development of wind power generation in recent years, several studies have dealt with the active and reactive power control of wind power systems, along with the quality of energy produced and the connection to distribution networks. In this context, this research proposes a new contribution to the field. The major objective of this work is the development of a nonlinear adaptive backstepping control technique applied to a DFIG based wind system and an optimization technique that uses the rooted tree optimization (RTO) algorithm. The backstepping control strategy is based on the Lyapunov nonlinear technique to guarantee the stability of the system. It is applied to the two converters (i.e., machine and network sides) and subsequently improved with estimators to make the proposed system robust to parametric variation. The RTO technique is based on monitoring the behavior of the underlying foundation of trees in search of underground water in accordance with the level of underground control. The solution proposed for the control is validated using two methods: (1) a simulation on MATLAB/Simulink to test the continuation of the reference (real wind speed) and the robustness of the system and (2) a real-time implementation on a dSPACE-DS1104 board connected to an experimental bench in a laboratory. Simulation and experimental results highlight the validation of the proposed model with better performance compared with other control techniques, such as sliding mode control, direct power control, and field-oriented control.

32 citations

References
More filters
Journal ArticleDOI
TL;DR: This ready-reckoner paper critically reviews and classifies more than 190 research papers on LVRT issues, practices, and available technologies for grid integration in wind energy systems, and it aims to be a quick reference for the researchers, designers, manufacturers, and engineers working in the same field.
Abstract: The wind power generation is a rapidly growing grid integrated renewable energy (RE) technology with an installed capacity of 539.291 GW. The capability of the wind energy conversion system (WECS) to remain integrated into the utility network in the case of low voltage events is called low-voltage ride-through (LVRT) capability. This paper offers a comprehensive overview of improvement techniques of the LVRT capability in WECS to increase the wind energy penetration level in the utility grid. Exhibited portrait manifests a broad spectrum of 1) wind turbines, 2) electrical generators used for wind power applications, 3) international grid codes applicable for grid integration of WECS, 4) LVRT fundamentals in WECS, 5) wind turbines LVRT methods by doubly fed induction generator (DFIG), 6) wind turbines LVRT methods by permanent magnet synchronous generators (PMSG), and 7) LVRT methods of wind turbines using squirrel cage induction generator (SCIG). This ready-reckoner paper critically reviews and classifies more than 190 research papers on LVRT issues, practices, and available technologies for grid integration in wind energy systems, and it aims to be a quick reference for the researchers, designers, manufacturers, and engineers working in the same field.

126 citations


"Comprehensive Review of Distributed..." refers background in this paper

  • ...More than 170 research publications [1-176] have been reviewed critically and presented in seven sections of this paper....

    [...]

  • ...The other important issues associated with RE placement, sizing and voltage ride-through in distribution systems reported in [10], [11]....

    [...]

Journal ArticleDOI
TL;DR: A new approach using field-programmable gate array (FPGA) to implement a fully digital control algorithm of active power filter (APF) is proposed in this paper, and experimental results on a laboratory prototype are given to demonstrate performance of the proposed approach during steady-state and dynamic operations.
Abstract: A new approach using field-programmable gate array (FPGA) to implement a fully digital control algorithm of active power filter (APF) is proposed in this paper. This FPGA-based controller integrates the whole signal-processing function of an APF, including synchronous-reference-frame transform, low-pass filter, three-phase phase-locked loop, inverter-current controller, etc. By case studies on the principle, performance, and architecture, these control blocks are implemented in real-time and synthesized into a medium-scale FPGA chip by adopting some useful digital-signal-processing techniques, such as pipelining, folding and strength reduction, with respect to minimization of hardware resource and enhancement of operating frequency. As a result, the whole algorithm needs around 5000 logic elements and can run at synchronous system-clock rates of up to 65 MHz. Experimental results on a laboratory prototype are given to demonstrate performance of the proposed approach during steady-state and dynamic operations.

126 citations


"Comprehensive Review of Distributed..." refers background in this paper

  • ...More than 170 research publications [1-176] have been reviewed critically and presented in seven sections of this paper....

    [...]

Journal ArticleDOI
TL;DR: A comprehensive review on the status of topological aspects of techniques used to improve the power quality in distribution network for the researchers, designers and engineers working in this area is provided.
Abstract: Recently utilities are continuously seeking cost-effective and accurate power quality (PQ) improvement techniques in order to achieve customer satisfaction. This paper intends to provide a comprehensive review on the status of topological aspects of techniques used to improve the power quality in distribution network for the researchers, designers and engineers working in this area. This review helps to select a PQ improvement technique that suits a specific application in terms of technical and economical aspects. More than 300 research publications on the state of the art of PQ improvement techniques have been rigorously analyzed, classified and listed for quick reference.

124 citations


"Comprehensive Review of Distributed..." refers background or methods in this paper

  • ...However, the performance of DFACTS technologies is largely dependent on the implemented control algorithm [21]....

    [...]

  • ...More than 170 research publications [1-176] have been reviewed critically and presented in seven sections of this paper....

    [...]

Journal ArticleDOI
TL;DR: An overview of a method for spectrum interpolation and frequency estimation, and a generalized method for very accurate frequency grid estimation using the fast Fourier transform procedure coupled with maximum decay sidelobe windows are presented.
Abstract: The energy produced by renewable energy systems must fulfill quality requirements as defined in the respective standards and directives. Improvement of the quality could be achieved through a more accurate estimation of the frequency of the grid's signal that is used to control an inverter. This paper presents an overview of a method for spectrum interpolation and frequency estimation, and a generalized method for very accurate frequency grid estimation using the fast Fourier transform procedure coupled with maximum decay sidelobe windows. An important feature of this algorithm is the elimination of the impact associated with the conjugate's component on the estimation's outcome (i.e, the possibility of designating the frequency even if the signal's measurement time is on the order of 2.5 periods), and the implementation of the algorithm is straightforward. The results of the simulation show that the algorithm could be successfully used for a fast and accurate estimation of the grid signal frequency. The systematic frequency estimation error is approximately 5·10 -11 Hz for a 5-ms measurement window. The algorithm could be used not only for a single sinusoidal signal, but also for a multifrequency signal. This is assuming that the appropriate spectrum leakage reduction (by a time window) will be performed.

115 citations


"Comprehensive Review of Distributed..." refers background in this paper

  • ...These algorithms for power quality mitigation studies are not often used due to their inaccuracy, as reported in [91]....

    [...]

  • ...More than 170 research publications [1-176] have been reviewed critically and presented in seven sections of this paper....

    [...]

Journal ArticleDOI
TL;DR: In this article, a simple single-phase grid-connected photovoltaic (PV) inverter topology consisting of a boost section, a low-voltage single phase inverter with an inductive filter, and a step-up transformer interfacing the grid is considered.
Abstract: In this paper, a simple single-phase grid-connected photovoltaic (PV) inverter topology consisting of a boost section, a low-voltage single-phase inverter with an inductive filter, and a step-up transformer interfacing the grid is considered Ideally, this topology will not inject any lower order harmonics into the grid due to high-frequency pulse width modulation operation However, the nonideal factors in the system such as core saturation-induced distorted magnetizing current of the transformer and the dead time of the inverter, etc, contribute to a significant amount of lower order harmonics in the grid current A novel design of inverter current control that mitigates lower order harmonics is presented in this paper An adaptive harmonic compensation technique and its design are proposed for the lower order harmonic compensation In addition, a proportional-resonant-integral (PRI) controller and its design are also proposed This controller eliminates the dc component in the control system, which introduces even harmonics in the grid current in the topology considered The dynamics of the system due to the interaction between the PRI controller and the adaptive compensation scheme is also analyzed The complete design has been validated with experimental results and good agreement with theoretical analysis of the overall system is observed

110 citations


"Comprehensive Review of Distributed..." refers background or methods in this paper

  • ...trol [163], proportional resonant integral (PRI) controller [164], optimized reactive power compensation algorithm (RPCA) [165], adaptive observer-based harmonic cancellation technique [130], non-linear adaptive controller [166], anti-windup [167], damped second order generalized integrator (DSOGI) [168], [169], decoupled adaptive noise detection (DAND) [170], admittance LMS neural network [126], LMF algorithm [171], combined LMS-LMF [172], momentum least mean square (MLMS) [173], improved linear sinusoidal tracer (ILST) [174], [175] and modified RLS [128]....

    [...]

  • ...More than 170 research publications [1-176] have been reviewed critically and presented in seven sections of this paper....

    [...]