scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Comprehensive Review of Distributed FACTS Control Algorithms for Power Quality Enhancement in Utility Grid With Renewable Energy Penetration

TL;DR: A comprehensive review of various conventional and adaptive algorithms used to control DFACTS devices for improvement of power quality in utility grids with RE penetration is presented.
Abstract: Rapid industrialization and its automation on the globe demands increased generation of electrical energy with more reliability and quality. Renewable energy (RE) sources are considered as a green form of energy and extensively used as an alternative source of energy for conventional energy sources to meet the increased demand for electrical power. However, these sources, when integrated to the utility grid, pose challenges in maintaining the power quality (PQ) and stability of the power system network. This is due to the unpredictable and variable nature of generation by these sources. The distributed flexible AC transmission system (DFACTS) devices such as distributed static compensator (DSTATCOM) and dynamic voltage restorer (DVR) play an active role in mitigating PQ issues associated with RE penetration. The performance of DFACTS devices is mostly dependent on the type of control algorithms employed for switching of these devices. This paper presents a comprehensive review of various conventional and adaptive algorithms used to control DFACTS devices for improvement of power quality in utility grids with RE penetration. This review intends to provide a summary of the design, experimental hardware, performance and feasibility aspects of these algorithms reported in the literature. More than 170 research publications are critically reviewed, classified, and listed for quick reference for the advantage of engineers and academician working in this area.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: A critical review of techniques used for detection and classification PQ disturbances in the utility grid with renewable energy penetration is presented, to provide various concepts utilized for extraction of the features to detect and classify the P Q disturbances even in the noisy environment.
Abstract: The global concern with power quality is increasing due to the penetration of renewable energy (RE) sources to cater the energy demands and meet de-carbonization targets. Power quality (PQ) disturbances are found to be more predominant with RE penetration due to the variable outputs and interfacing converters. There is a need to recognize and mitigate PQ disturbances to supply clean power to the consumer. This article presents a critical review of techniques used for detection and classification PQ disturbances in the utility grid with renewable energy penetration. The broad perspective of this review paper is to provide various concepts utilized for extraction of the features to detect and classify the PQ disturbances even in the noisy environment. More than 220 research publications have been critically reviewed, classified and listed for quick reference of the engineers, scientists and academicians working in the power quality area.

104 citations


Cites background from "Comprehensive Review of Distributed..."

  • ...These classified disturbances are later mitigated in the mitigation stage using distributed flexible AC transmission system (DFACTS) devices [37]....

    [...]

Journal ArticleDOI
11 Aug 2020-Energies
TL;DR: A thorough discussion and comprehensive review of DVR topologies based on operations, power converters, control methods, and applications and the state-of-the-art in works of literature, and comparative study on power quality issues are provided.
Abstract: Power quality is a pressing concern and of the utmost importance for advanced and high-tech equipment in particular, whose performance relies heavily on the supply’s quality. Power quality issues like voltage sags/swells, harmonics, interruptions, etc. are defined as any deviations in current, voltage, or frequency that result in end-use equipment damage or failure. Sensitive loads like medical equipment in hospitals and health clinics, schools, prisons, etc. malfunction for the outages and interruptions, thereby causing substantial economic losses. For enhancing power quality, custom power devices (CPDs) are recommended, among which the Dynamic Voltage Restorer (DVR) is considered as the best and cost-effective solution. DVR is a power electronic-based solution to mitigate and compensate voltage sags. This paper provides a thorough discussion and comprehensive review of DVR topologies based on operations, power converters, control methods, and applications. The review compares the state-of-the-art in works of literature, and comparative study on power quality issues, the DVR principle along with its operation modes, the DVR components, the DVR topologies based on energy storage, the DVR topologies based on single-/three-phase power converters, and the DVR topologies based on control units that have different control processing stages. Furthermore, modified and improved configurations of the DVR, as well as its integration with distributed generations, are described. This work serves as a comprehensive and useful reference for those who have an interest in researching DVRs.

58 citations

Journal ArticleDOI
TL;DR: A critical one-stop handbook related to one hundred and four methods in six categories covering all kinds of networks and tailored applications for ESS selection, evaluation criteria, modelling and solution methods is provided.
Abstract: Energy storage system (ESS) has been expected to be a viable solution which can provide diverse benefits to different power system stakeholders, including generation side, transmission network (TN), distribution network (DN) and off-grid microgrid. Prudent ESS allocation in power grids determines satisfactory performance of ESS applications. Optimal sizing and placement of ESS are crucial for power quality improvement of DN and transmission system protection setting. To solve this issue, considerable researches have been done either in modelling or algorithms. However, various options and complex characteristics in different sub-systems make it difficult to appraise a specific method for an ESS application, while the existing reviews only focus on ESS applications in DN. This paper provides a critical one-stop handbook related to one hundred and four methods in six categories covering all kinds of networks and tailored applications. Meanwhile, a systematic methodology is presented with an extensive latest literature review, including ESS selection, evaluation criteria, modelling and solution methods. Particularly, different technical requirements and modelling methods of different sub-systems are outlined. Besides, pros and cons of optimization methods are thoroughly analysed and compared to reveal state-of-the-art studies. Finally, key points in optimal ESS sizing and placement are concluded along with recommendations for future research.

52 citations

Journal ArticleDOI
TL;DR: In this article, the authors compare and relate prior and latest developments on PQ and stability challenges and their solutions and highlight the recommendations and future trends for PQ improvement are highlighted at the end.
Abstract: Recently, the penetration of renewable energy sources (RESs) into electrical power systems is witnessing a large attention due to their inexhaustibility, environmental benefits, storage capabilities, lower maintenance and stronger economy, etc. Among these RESs, offshore wind power plants (OWPP) are ones of the most widespread power plants that have emerged with regard to being competitive with other energy technologies. However, the application of power electronic converters (PECs), offshore transmission lines and large substation transformers result in considerable power quality (PQ) issues in grid connected OWPP. Moreover, due to the installation of filters for each OWPP, some other challenges such as voltage and frequency stability arise. In this regard, various customs power devices along with integration control methodologies have been implemented to deal with stated issues. Furthermore, for a smooth and reliable operation of the system, each country established various grid codes. Although various mitigation schemes and related standards for OWPP are documented separately, a comprehensive review covering these aspects has not yet addressed in the literature. The objective of this study is to compare and relate prior as well as latest developments on PQ and stability challenges and their solutions. Low voltage ride through (LVRT) schemes and associated grid codes prevalent for the interconnection of OWPP based power grid have been deliberated. In addition, various PQ issues and mitigation options such as FACTS based filters, DFIG based adaptive and conventional control algorithms, ESS based methods and LVRT requirements have been summarized and compared. Finally, recommendations and future trends for PQ improvement are highlighted at the end.

34 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a nonlinear adaptive backstepping control technique applied to a DFIG based wind system and an optimization technique that uses the rooted tree optimization (RTO) algorithm.
Abstract: With the development of wind power generation in recent years, several studies have dealt with the active and reactive power control of wind power systems, along with the quality of energy produced and the connection to distribution networks. In this context, this research proposes a new contribution to the field. The major objective of this work is the development of a nonlinear adaptive backstepping control technique applied to a DFIG based wind system and an optimization technique that uses the rooted tree optimization (RTO) algorithm. The backstepping control strategy is based on the Lyapunov nonlinear technique to guarantee the stability of the system. It is applied to the two converters (i.e., machine and network sides) and subsequently improved with estimators to make the proposed system robust to parametric variation. The RTO technique is based on monitoring the behavior of the underlying foundation of trees in search of underground water in accordance with the level of underground control. The solution proposed for the control is validated using two methods: (1) a simulation on MATLAB/Simulink to test the continuation of the reference (real wind speed) and the robustness of the system and (2) a real-time implementation on a dSPACE-DS1104 board connected to an experimental bench in a laboratory. Simulation and experimental results highlight the validation of the proposed model with better performance compared with other control techniques, such as sliding mode control, direct power control, and field-oriented control.

32 citations

References
More filters
Journal ArticleDOI
TL;DR: A comprehensive study of power quality in power systems, including the systems with dc and renewable sources is done, and power quality monitoring techniques and possible solutions of the power quality issues for the power systems are elaborately studied.
Abstract: This paper discusses the power quality issues for distributed generation systems based on renewable energy sources, such as solar and wind energy. A thorough discussion about the power quality issues is conducted here. This paper starts with the power quality issues, followed by discussions of basic standards. A comprehensive study of power quality in power systems, including the systems with dc and renewable sources is done in this paper. Power quality monitoring techniques and possible solutions of the power quality issues for the power systems are elaborately studied. Then, we analyze the methods of mitigation of these problems using custom power devices, such as D-STATCOM, UPQC, UPS, TVSS, DVR, etc., for micro grid systems. For renewable energy systems, STATCOM can be a potential choice due to its several advantages, whereas spinning reserve can enhance the power quality in traditional systems. At Last, we study the power quality in dc systems. Simpler arrangement and higher reliability are two main advantages of the dc systems though it faces other power quality issues, such as instability and poor detection of faults.

223 citations


"Comprehensive Review of Distributed..." refers background in this paper

  • ...More than 170 research publications [1-176] have been reviewed critically and presented in seven sections of this paper....

    [...]

Proceedings ArticleDOI
01 Oct 2016
TL;DR: An extensive literature review is conducted on emerging power quality challenges due to renewable energy integration, and various methods are reviewed, and the control-technology-based power quality improvement is the major focus of this paper.
Abstract: Renewable energy becomes a key contributor to our modern society, but their integration to power grid poses significant technical challenges. Power quality is an important aspect of renewable energy integration. The major power quality concerns are: 1) Voltage and frequency fluctuations, which are caused by non-controllable variability of renewable energy resources. Their intermittent nature due to ever-changing weather conditions leads to voltage and frequency fluctuations at the interconnected power grid. 2) Harmonics, which are introduced by power electronic devices utilized in renewable energy generation. When penetration level of renewable energy is high, the influence of harmonics could be significant. In this paper, an extensive literature review is conducted on emerging power quality challenges due to renewable energy integration. The paper consists of two sections: 1) Power quality problem definition. Wind turbines and solar photovoltaic (PV) systems and their power quality issues are summarized. 2) Existing approaches to improve power quality. Various methods are reviewed. The future research directions for emerging power quality challenges for renewable energy integration are recommended in the paper.

209 citations


"Comprehensive Review of Distributed..." refers background in this paper

  • ...Therefore, PQ mitigation is a major concern for electric smart grids [41]....

    [...]

  • ...More than 170 research publications [1-176] have been reviewed critically and presented in seven sections of this paper....

    [...]

Journal ArticleDOI
TL;DR: This paper describes and evaluates an adaptive neuro-fuzzy inference system (ANFIS)-based energy management system (EMS) of a grid-connected hybrid system and compares with a classical EMS composed of state-based supervisory control system based on states and inverter control systembased on PI controllers.
Abstract: This paper describes and evaluates an adaptive neuro-fuzzy inference system (ANFIS)-based energy management system (EMS) of a grid-connected hybrid system. It presents a wind turbine (WT) and photovoltaic (PV) solar panels as primary energy sources, and an energy storage system (ESS) based on hydrogen (fuel cell -FC-, hydrogen tank and electrolyzer) and battery. All of the energy sources use dc/dc power converters in order to connect them to a central DC bus. An ANFIS-based supervisory control system determines the power that must be generated by/stored in the hydrogen and battery, taking into account the power demanded by the grid, the available power, the hydrogen tank level and the state-of-charge (SOC) of the battery. Furthermore, an ANFIS-based control is applied to the three-phase inverter, which connects the hybrid system to grid. Otherwise, this new EMS is compared with a classical EMS composed of state-based supervisory control system based on states and inverter control system based on PI controllers. Dynamic simulations demonstrate the right performance of the ANFIS-based EMS for the hybrid system under study and the better performance with respect to the classical EMS.

208 citations


"Comprehensive Review of Distributed..." refers background or methods in this paper

  • ...trol [163], proportional resonant integral (PRI) controller [164], optimized reactive power compensation algorithm (RPCA) [165], adaptive observer-based harmonic cancellation technique [130], non-linear adaptive controller [166], anti-windup [167], damped second order generalized integrator (DSOGI) [168], [169], decoupled adaptive noise detection (DAND) [170], admittance LMS neural network [126], LMF algorithm [171], combined LMS-LMF [172], momentum least mean square (MLMS) [173], improved linear sinusoidal tracer (ILST) [174], [175] and modified RLS [128]....

    [...]

  • ...More than 170 research publications [1-176] have been reviewed critically and presented in seven sections of this paper....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a literature survey of flexible ac transmission systems (FACTSs) and voltage-source converters, with smart dynamic controllers, is presented to improve the power quality and ensure efficient energy utilization and energy management in smart grids with renewable energy sources.
Abstract: In the last two decades, emerging use of renewable and distributed energy sources in electricity grid has created new challenges for the utility regarding the power quality, voltage stabilization and efficient energy utilization. Power electronic converters are extensively utilized to interface the emerging energy systems (without and with energy storage) and smart buildings with the transmission and distribution systems. Flexible ac transmission systems (FACTSs) and voltage-source converters, with smart dynamic controllers, are emerging as a stabilization and power filtering equipment to improve the power quality. Also, distributed FACTSs play an important role in improving the power factor, energy utilization, enhancing the power quality, and ensuring efficient energy utilization and energy management in smart grids with renewable energy sources. This paper presents a literature survey of FACTS technology tools and applications for power quality and efficient renewable energy system utilization.

208 citations


"Comprehensive Review of Distributed..." refers background in this paper

  • ...As a conclusion of section IV, the performance of modern utility grid in terms of PQ mitigation largely depends on the type of load, RES, strength of AC grid and power quality mitigation methodology (selection of DFACTS device and its control algorithm) [53]....

    [...]

  • ...More than 170 research publications [1-176] have been reviewed critically and presented in seven sections of this paper....

    [...]