scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Comprehensive Review on Detection and Classification of Power Quality Disturbances in Utility Grid With Renewable Energy Penetration

TL;DR: A critical review of techniques used for detection and classification PQ disturbances in the utility grid with renewable energy penetration is presented, to provide various concepts utilized for extraction of the features to detect and classify the P Q disturbances even in the noisy environment.
Abstract: The global concern with power quality is increasing due to the penetration of renewable energy (RE) sources to cater the energy demands and meet de-carbonization targets. Power quality (PQ) disturbances are found to be more predominant with RE penetration due to the variable outputs and interfacing converters. There is a need to recognize and mitigate PQ disturbances to supply clean power to the consumer. This article presents a critical review of techniques used for detection and classification PQ disturbances in the utility grid with renewable energy penetration. The broad perspective of this review paper is to provide various concepts utilized for extraction of the features to detect and classify the PQ disturbances even in the noisy environment. More than 220 research publications have been critically reviewed, classified and listed for quick reference of the engineers, scientists and academicians working in the power quality area.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article , the authors provide an up-to-date review of the most recent global trend of various renewable energy integrations into the power sector and discuss the role of RE integration in sustainable development.

55 citations

Journal ArticleDOI
TL;DR: In this paper, the static synchronous compensator (STATCOM) is considered for both improving the performance of a hybrid system, which contains WECS and photovoltaics (PVs) against wind gusts and maintaining the continuous operations of RESs during three-phase fault occur at the point of common coupling (PCC) between the RESs and the grid.
Abstract: Connecting different renewable energy sources (RESs) to the electrical grids is presently being urged to fulfill the enormous need for electric power and to decrease traditional sources’ ecological related issues, the so-called hybrid systems. Unfortunately, these hybrid systems suffer from the possible negative environmental impacts of the wind gusts in wind energy conversion systems (WECSs) that may degrade the overall system performance. Additionally, various severe faults may disconnect some RESs from the hybrid system, like three-phase faults. In this paper, the static synchronous compensator (STATCOM) is considered for both improving the performance of a hybrid system, contains WECS and photovoltaics (PVs) against wind gusts and maintaining the continuous operations of RESs during three-phase fault occur at the point of common coupling (PCC) between the RESs and the grid. The STATCOM is stimulated by two PI controllers regulating the reactive power flow between the STATCOM and the hybrid system at PCC and, consequently, regulating the voltage at PCC. A metaheuristic optimizer optimally schedules these two PI controllers based on whale optimization algorithm (WOA). The impartial comparison between the WOA dynamic performance and the particle swarm optimization as another optimization algorithm verifies the efficiency of the WOA for the near-optimal gain scheduling of the PI controller gains.

52 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an exhaustive survey of detection and classification of power quality disturbances by discussing signal processing techniques and artificial intelligence tools with their respective pros and cons, with the viewpoint of the types of power input signal (synthetic/real/noisy), preprocessing tools, feature selection methods, artificial intelligence techniques and modes of operation (online/offline).
Abstract: Recently, power quality (PQ) issues have drawn considerable attention of the researchers due to the increasing awareness of the customers towards power quality. The PQ issues maintain its pre-eminence because of the significant growth encountered in the smart grid technology, distributed generation, usage of sensitive and power electronic equipments with the integration of renewable energy resources. The IoT and 5G networks technologies have a number of advantages like smart sensor interfacing, remote sensing and monitoring, data transmission at high speed. Due to this, applications of these two are highly adopted in smart grid. The prime focus of the paper is to present an exhaustive survey of detection and classification of power quality disturbances by discussing signal processing techniques and artificial intelligence tools with their respective pros and cons. Further, critical analysis of automatic recognition techniques for the concerned field is posited with the viewpoint of the types of power input signal (synthetic/real/noisy), pre-processing tools, feature selection methods, artificial intelligence techniques and modes of operation (online/offline) as per the reported articles. The present work also elaborates the future scope of the said field for the reader. This paper provides valuable guidelines to the researchers those having interest in the field of PQ analysis and exploring the better methodologies for further improvement. Comprehensive comparisons have been presented with the help of tabular presentations. Although this critical survey cannot be collectively exhaustive, still this survey comprises the most significant works in the concerned paradigm by examining more than 300 research publications.

37 citations

Journal ArticleDOI
TL;DR: The proposed hybrid convolutional neural network method is a novel approach that covers the steps of an expert examining a signal and its classification performance is relatively high compared to other methods, the computational complexity is almost the same.
Abstract: As a result of the widespread use of power electronic equipment and the increase in consumption, the importance of effective energy policies and the smart grid begins to increase. Nonlinear loads and other loads in electric power systems are considered as the main reason for power quality disturbance. Distortions in signal quality and shape due to power quality disturbance cause a decrease in total efficiency. The proposed hybrid convolutional neural network method consists of a 1D convolutional neural network structure and a 2D convolutional neural network structure. The features acquired by these two convolutional neural network architectures are classified using the fully connected layer, which is traditionally used as the classifier of convolutional neural network architectures. Power signals are processed using a 1D convolutional neural network in their original form. Then these signals are converted into images and processed using a 2D convolutional neural network. Then, feature vectors generated by 1D and 2D convolutional neural networks are combined. Finally, this combined vector is classified by a fully connected layer. The proposed method is well suited to the nature of signal processing. It is a novel approach that covers the steps of an expert examining a signal. The proposed framework is compared with other state-of-the-art power quality disturbance classification methods in the literature. While the proposed method's classification performance is relatively high compared to other methods, the computational complexity is almost the same.

34 citations

Proceedings ArticleDOI
27 Jul 2014
TL;DR: In this paper, the authors provided an improved power quality (PQ) disturbances classification, which were associated with load changes and environmental factors, by employing support vector machines (SVM) and decision tree classifiers.
Abstract: Penetration of distributed generation (DG) systems in conventional power systems leads to power quality (PQ) disturbances. This paper provides an improved PQ disturbances classification, which are associated with load changes and environmental factors. Various forms of PQ disturbances, including sag, swell, notch and harmonics, are taken into account. Several features are obtained through HS-transform, out of which optimal features are selected using a genetic algorithm (GA). These optimal features are used for PQ disturbances classification by employing support vector machines (SVM) and decision tree (DT) classifiers. The study is supported on three different case studies, considering experimental set-up prototypes for wind energy and photovoltaic (PV) systems, as well as the modified Nordic 32-bus test system. The robustness and precision of DT and SWM is performed with noise and harmonics in the disturbance signals, thus providing comprehensive results.

31 citations

References
More filters
01 Jan 2010
TL;DR: The Kalman filter as mentioned in this paper is an efficient recursive filter that estimates the internal state of a linear dynamic system from a series of noisy measurements, and is used in a wide range of engineering and econometric applications from radar and computer vision to estimation of structural macroeconomic models.
Abstract: Although the Kalman filter was orginally developed for space satelilte navigation systems, it proved to be very useful for a host of applications, such as radio communication signals, uninterrupted power supplies, and economics. The Kalman filter is an efficient recursive filter that estimates the internal state of a linear dynamic system from a series of noisy measurements. It is used in a wide range of engineering and econometric applications from radar and computer vision to estimation of structural macroeconomic models [10], and is an important topic in control theory and control systems engineering.

128 citations

Journal ArticleDOI
TL;DR: In order to reduce the influence of Heisenberg' s uncertainty, it is proposed that different signal components are windowed by different Gaussian windows, which brings better adaption and flexibility.
Abstract: This paper proposes a real-time power quality disturbances (PQDs) classification by using a hybrid method (HM) based on S-transform (ST) and dynamics (Dyn). Classification accuracy and run time are mainly considered in our work. The HM firstly uses Dyn to identify the location of the signal components in the frequency spectrum yielded by Fourier transform, and uses inverse Fourier transform to only some of the signal components. Then features from Fourier transform, ST, and Dyn are selected, and a decision tree is used to classify the types of PQD. In order to reduce the influence of Heisenberg' s uncertainty, we proposed that different signal components are windowed by different Gaussian windows, which brings better adaption and flexibility. By the HM, run time of the application has been greatly reduced with satisfactory classification accuracy. Finally, a DSP-FPGA based hardware platform is adopted to test the run time and correctness of the proposed method under real standard signals. Field signal tests have also presented. Both simulations and experiments validate the feasibility of the new method.

128 citations


"Comprehensive Review on Detection a..." refers background or methods in this paper

  • ...Different types of noisy conditions are considered in [3], [7], [50], [80], [170], [183] whereas...

    [...]

  • ...The other S-transform reported in the literature includes, discrete orthogonal S-transform [79], hybrid S-transform [80], generalized hyperbolic ST [81], Modified ST with...

    [...]

Journal ArticleDOI
TL;DR: In this article, an electrical pattern generator has been developed in order to generate common disturbances which can be found in the electrical grid and the classifier obtained excellent results for both test patterns and field tests thanks in part to the use of this generator as a training tool for the neural networks.
Abstract: Power-quality (PQ) monitoring is an essential service that many utilities perform for their industrial and larger commercial customers. Detecting and classifying the different electrical disturbances which can cause PQ problems is a difficult task that requires a high level of engineering knowledge. This paper presents a novel system based on neural networks for the classification of electrical disturbances in real time. In addition, an electrical pattern generator has been developed in order to generate common disturbances which can be found in the electrical grid. The classifier obtained excellent results (for both test patterns and field tests) thanks in part to the use of this generator as a training tool for the neural networks. The neural system is integrated on a software tool for a PC with hardware connected for signal acquisition. The tool makes it possible to monitor the acquired signal and the disturbances detected by the system.

123 citations


"Comprehensive Review on Detection a..." refers methods in this paper

  • ...statistics [126] and Wavelet-based NN classifier in synthesis, as well as real-time data-based analysis for PQDs classification, has been presented in [164]....

    [...]

Proceedings ArticleDOI
15 Mar 2009
TL;DR: The simulation results reveal that the combination of S-Transform and PNN can effectively detect and classify different PQ events and it is found that the classification performance of PNN is better than both FFML and LVQ.
Abstract: This paper presents an S-Transform based probabilistic neural network (PNN) classifier for recognition of power quality (PQ) disturbances. The proposed method requires less number of features as compared to wavelet based approach for the identification of PQ events. The features extracted through the S-Transform are trained by a PNN for automatic classification of the PQ events. Since the proposed methodology can reduce the features of the disturbance signal to a great extent without losing its original property, less memory space and learning PNN time are required for classification. Eleven types of disturbances are considered for the classification problem. The simulation results reveal that the combination of S-Transform and PNN can effectively detect and classify different PQ events. The classification performance of PNN is compared with a feedforward multilayer (FFML) neural network (NN) and learning vector quantization (LVQ) NN. It is found that the classification performance of PNN is better than both FFML and LVQ.

119 citations

Journal ArticleDOI
TL;DR: In this paper, a wavelet-based extended fuzzy reasoning approach was proposed for power-quality disturbance recognition and identification. But, the power quality disturbance features were not mapped into a real number, in terms of which different powerquality disturbance waveforms are classified.
Abstract: This paper proposes a wavelet-based extended fuzzy reasoning approach to power-quality disturbance recognition and identification. To extract power-quality disturbance features, the energy distribution of the wavelet part at each decomposition level is introduced and its calculation mathematically established. Based on these features, rule bases are generated for extended fuzzy reasoning. The power-quality disturbance features are finally mapped into a real number, in terms of which different power-quality disturbance waveforms are classified. Numerical results obtained from a large database show that the disturbance waveforms such as high- and low-frequency capacitor switching, voltage sag, impulsive transient, transformer energizing, and perfect sine waveform can all be correctly identified. The effect of the amplitude and frequency content of power-quality disturbance on the energy distribution patterns and the effect of noise on classification accuracy are also discussed in the paper.

116 citations


"Comprehensive Review on Detection a..." refers methods in this paper

  • ...classification algorithms include fuzzy reasoning approach [181], basic fuzzy logic [182], TS fuzzy logic [183], modified fuzzy min-max clustering NN [184] and FES classifier for PQ time series data mining using ST [185]....

    [...]