scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Compression Of Stereo Images And The Evaluation Of Its Effects On 3-D Perception

30 Jan 1990-Vol. 1153, pp 522-530
TL;DR: The proposed approach to stereo image coding takes advantage of the singleness of vision property of the human visual system and shows that a stereo image pair, in which one of the images is low-pass filtered and subsampled, is perceived as a sharp 3-D image.
Abstract: The proposed approach to stereo image coding takes advantage of the singleness of vision property of the human visual system. Experiments show that a stereo image pair, in which one of the images is low-pass filtered and subsampled, is perceived as a sharp 3-D image. The depth information is perceived due to the stereopsis effect, and the sharpness is maintained due to the details in the non-filtered image. A methodology for the evaluation of the compression effects on the 3-D perception of stereo images is presented. It is based on measurements of response-time and accuracy of human subjects performing simple 3-D perception tasks.
Citations
More filters
Journal ArticleDOI
TL;DR: It was found that spatial filtering of one channel of a stereo video-sequence may be an effective means of reducing the transmission bandwidth: the overall sensation of depth was unaffected by low-pass filtering, while ratings of quality and of sharpness were strongly weighted towards the eye with the greater spatial resolution.
Abstract: We explored the response of the human visual system to mixed-resolution stereo video-sequences, in which one eye view was spatially or temporally low-pass filtered. It was expected that the perceived quality, depth, and sharpness would be relatively unaffected by low-pass filtering, compared to the case where both eyes viewed a filtered image. Subjects viewed two 10-second stereo video-sequences, in which the right-eye frames were filtered vertically (V) and horizontally (H) at 1/2 H, 1/2 V, 1/4 H, 1/4 V, 1/2 H 1/2 V, 1/2 H 1/4 V, 1/4 H 1/2 V, and 1/4 H 1/4 V resolution. Temporal filtering was implemented for a subset of these conditions at 1/2 temporal resolution, or with drop-and-repeat frames. Subjects rated the overall quality, sharpness, and overall sensation of depth. It was found that spatial filtering produced acceptable results: the overall sensation of depth was unaffected by low-pass filtering, while ratings of quality and of sharpness were strongly weighted towards the eye with the greater spatial resolution. By comparison, temporal filtering produced unacceptable results: field averaging and drop-and-repeat frame conditions yielded images with poor quality and sharpness, even though perceived depth was relatively unaffected. We conclude that spatial filtering of one channel of a stereo video-sequence may be an effective means of reducing the transmission bandwidth.

217 citations

Proceedings ArticleDOI
24 Jul 1998
TL;DR: The characteristics of MVR algorithms in general are described, along with the design, implementation, and applications of a particular MVR rendering system.
Abstract: This paper presents an algorithm for rendering a static scene from multiple perspectives. While most current computer graphics algorithms render scenes as they appear from a single viewpoint (the location of the camera) multiple viewpoint rendering (MVR) renders a scene from a range of spatially-varying viewpoints. By exploiting perspective coherence, MVR can produce a set of images orders of magnitude faster than conventional rendering methods. Images produced by MVR can be used as input to multiple-perspective displays such as holographic stereograms, lenticular sheet displays, and holographic video. MVR can also be used as a geometry-to-image prefilter for image-based rendering algorithms. MVR techniques are adapted from single viewpoint computer graphics algorithms and can be accelerated using existing hardware graphics subsystems. This paper describes the characteristics of MVR algorithms in general, along with the design, implementation, and applications of a particular MVR rendering system.

115 citations

Proceedings ArticleDOI
15 Apr 1994
TL;DR: In this paper, the authors exploit the correlations between 3D-stereoscopic left-right image pairs to achieve high compression factors for imageframe storage and image stream transmission, and they find extremely high correlations between left- right frames offset in time such that perspective-induced disparity between viewpoints and motion-induced parallax from a single viewpoint are nearly identical; they coin the term "WoridLine correlation" for this condition.
Abstract: We exploit the correlations between 3D-stereoscopic left-right image pairs to achieve high compression factors for imageframe storage and image stream transmission. In particular, in image stream transmission, we can find extremely highcorrelations between left-right frames offset in time such that perspective-induced disparity between viewpoints and motion-induced parallax from a single viewpoint are nearly identical; we coin the term "WoridLine correlation' for this condition.We test these ideas in two implementations, (1) straightforward computing of blockwise cross- correlations, and (2)multiresolution hierarchical matching using a wavelet- based compression method. We find that good 3D-stereoscopic imagery can be had for only a few percent more storage space or transmission bandwidth than is required for the corresponding flat imagery.1. INTRODUCTIONThe successful development of compression schemes for motion video that exploit the high correlation between temporallyadjacent frames, e.g., MPEG, suggests that we might analogously exploit the high correlation between spatially or angularlyadjacent still frames, i.e., left-right 3D-stereoscopic image pairs. If left-right pairs are selected from 3D-stereoscopic motionstreams at different times, such that perspective-induced disparity left-right and motion-induced disparity earlier-laterproduce about the same visual effect, then extremely high correlation will exist between the members of these pairs. Thiseffect, for which we coin the term "WorldLine correlation", can be exploited to achieve extremely high compression factorsfor stereo video streams.Our experiments demonstrate that a reasonable synthesis of one image of a left-right stereo image pair can be estimated fromthe other uncompressed or conventionally compressed image augmented by a small set of numbers that describe the localcross-correlations in terms of a disparity map. When the set is as small (in bits) as 1 to 2% of the conventionally compressedimage the stereoscopically viewed pair consisting of one original and one synthesized image produces convincing stereoimagery. Occlusions, for which this approach of course fails, can be handled efficiently by encoding and transmitting errormaps (residuals) of regions where a local statistical operator indicates that an occlusion is probable.Two cross-correlation mapping schemes independently developed by two of us (P.G. and S.S.) have been coded and tested,

39 citations

Proceedings ArticleDOI
13 Nov 1994
TL;DR: The psychophysical property of the human visual system, that only one high resolution image in a stereo image pair is sufficient for satisfactory depth perception, has been used to further reduce the bit rates in this paper.
Abstract: Stereoscopic sequence compression typically involves the exploitation of the spatial redundancy between the left and right streams to achieve higher compressions than are possible with the independent compression of the two streams. In this paper the psychophysical property of the human visual system, that only one high resolution image in a stereo image pair is sufficient for satisfactory depth perception, has been used to further reduce the bit rates. Thus, one of the streams is independently coded along the lines of the MPEG standards, while the other stream is estimated at a lower resolution from this stream. A multiresolution framework has been adopted to facilitate such an estimation of motion and disparity vectors at different resolutions. Experimental results on typical sequences indicate that the additional stream can be compressed to about one-fifth of a highly compressed independently coded stream, without any significant loss in depth perception or perceived image quality. >

35 citations


Cites background from "Compression Of Stereo Images And Th..."

  • ...Psychophysical experiments [5],[6] have shown that a stereo image pair with one high resolution image and one lower resolution image are sufficient to provide good stereoscopic depth perception....

    [...]

Journal ArticleDOI
TL;DR: The algorithm effectively combines the simplicity and adaptability of the existing block based stereo image compression techniques with an edge/contour based object extraction technique to determine appropriate compression strategy for various areas of the right image.
Abstract: We propose a hybrid scheme to implement an object driven, block based algorithm to achieve low bit-rate compression of stereo image pairs. The algorithm effectively combines the simplicity and adaptability of the existing block based stereo image compression techniques with an edge/contour based object extraction technique to determine appropriate compression strategy for various areas of the right image. Unlike the existing object-based coding such as MPEG-4 developed in the video compression community, the proposed scheme does not require any additional shape coding. Instead, the arbitrary shape is reconstructed by the matching object inside the left frame, which has been encoded by standard JPEG algorithm and hence made available at the decoding end for those shapes in right frames. Yet the shape reconstruction for right objects incurs no distortion due to the unique correlation between left and right frames inside stereo image pairs and the nature of the proposed hybrid scheme. Extensive experiments carried out support that significant improvements of up to 20% in compression ratios are achieved by the proposed algorithm in comparison with the existing block-based technique, while the reconstructed image quality is maintained at a competitive level in terms of both PSNR values and visual inspections.

29 citations

References
More filters
Book
01 Jan 1978
TL;DR: In this paper, a unified experimental approach to the study of the mind based on experiments concerning the time course of human information processing is described, drawing systematically on studies of performance, subjective experience, and brain processes.
Abstract: In this widely cited volume, Professor Posner describes a unified experimental approach to the study of the mind based on experiments concerning the time course of human information processing. Drawing systematically on studies of performance, subjective experience, and brain processes, he develops relationships between cognitive psychology and neuroscience. Professor Posner has written a new preface for the paperback edition.

69 citations