scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Compressive Sensing [Lecture Notes]

08 Aug 2007-IEEE Signal Processing Magazine (IEEE)-Vol. 24, Iss: 4, pp 118-121
TL;DR: This lecture note presents a new method to capture and represent compressible signals at a rate significantly below the Nyquist rate, called compressive sensing, which employs nonadaptive linear projections that preserve the structure of the signal.
Abstract: This lecture note presents a new method to capture and represent compressible signals at a rate significantly below the Nyquist rate. This method, called compressive sensing, employs nonadaptive linear projections that preserve the structure of the signal; the signal is then reconstructed from these projections using an optimization process.
Citations
More filters
Journal ArticleDOI
TL;DR: A new camera architecture based on a digital micromirror device with the new mathematical theory and algorithms of compressive sampling is presented that can operate efficiently across a broader spectral range than conventional silicon-based cameras.
Abstract: In this article, the authors present a new approach to building simpler, smaller, and cheaper digital cameras that can operate efficiently across a broader spectral range than conventional silicon-based cameras. The approach fuses a new camera architecture based on a digital micromirror device with the new mathematical theory and algorithms of compressive sampling.

3,316 citations

Journal ArticleDOI
TL;DR: This work develops a novel framework to discover governing equations underlying a dynamical system simply from data measurements, leveraging advances in sparsity techniques and machine learning and using sparse regression to determine the fewest terms in the dynamic governing equations required to accurately represent the data.
Abstract: Extracting governing equations from data is a central challenge in many diverse areas of science and engineering. Data are abundant whereas models often remain elusive, as in climate science, neuroscience, ecology, finance, and epidemiology, to name only a few examples. In this work, we combine sparsity-promoting techniques and machine learning with nonlinear dynamical systems to discover governing equations from noisy measurement data. The only assumption about the structure of the model is that there are only a few important terms that govern the dynamics, so that the equations are sparse in the space of possible functions; this assumption holds for many physical systems in an appropriate basis. In particular, we use sparse regression to determine the fewest terms in the dynamic governing equations required to accurately represent the data. This results in parsimonious models that balance accuracy with model complexity to avoid overfitting. We demonstrate the algorithm on a wide range of problems, from simple canonical systems, including linear and nonlinear oscillators and the chaotic Lorenz system, to the fluid vortex shedding behind an obstacle. The fluid example illustrates the ability of this method to discover the underlying dynamics of a system that took experts in the community nearly 30 years to resolve. We also show that this method generalizes to parameterized systems and systems that are time-varying or have external forcing.

2,784 citations

Journal ArticleDOI
TL;DR: This paper presents an overview of un Mixing methods from the time of Keshava and Mustard's unmixing tutorial to the present, including Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixed algorithms.
Abstract: Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.

2,373 citations

Posted Content
TL;DR: An overview of unmixing methods from the time of Keshava and Mustard's tutorial as mentioned in this paper to the present can be found in Section 2.2.1].
Abstract: Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.

1,808 citations

Journal ArticleDOI
TL;DR: In this article, the authors introduce a new class of structured compressible signals along with a new sufficient condition for robust structured compressibility signal recovery that they dub the restricted amplification property, which is the natural counterpart to the restricted isometry property of conventional CS.
Abstract: Compressive sensing (CS) is an alternative to Shannon/Nyquist sampling for the acquisition of sparse or compressible signals that can be well approximated by just K ? N elements from an N -dimensional basis. Instead of taking periodic samples, CS measures inner products with M < N random vectors and then recovers the signal via a sparsity-seeking optimization or greedy algorithm. Standard CS dictates that robust signal recovery is possible from M = O(K log(N/K)) measurements. It is possible to substantially decrease M without sacrificing robustness by leveraging more realistic signal models that go beyond simple sparsity and compressibility by including structural dependencies between the values and locations of the signal coefficients. This paper introduces a model-based CS theory that parallels the conventional theory and provides concrete guidelines on how to create model-based recovery algorithms with provable performance guarantees. A highlight is the introduction of a new class of structured compressible signals along with a new sufficient condition for robust structured compressible signal recovery that we dub the restricted amplification property, which is the natural counterpart to the restricted isometry property of conventional CS. Two examples integrate two relevant signal models-wavelet trees and block sparsity-into two state-of-the-art CS recovery algorithms and prove that they offer robust recovery from just M = O(K) measurements. Extensive numerical simulations demonstrate the validity and applicability of our new theory and algorithms.

1,789 citations

References
More filters
Book
D.L. Donoho1
01 Jan 2004
TL;DR: It is possible to design n=O(Nlog(m)) nonadaptive measurements allowing reconstruction with accuracy comparable to that attainable with direct knowledge of the N most important coefficients, and a good approximation to those N important coefficients is extracted from the n measurements by solving a linear program-Basis Pursuit in signal processing.
Abstract: Suppose x is an unknown vector in Ropfm (a digital image or signal); we plan to measure n general linear functionals of x and then reconstruct. If x is known to be compressible by transform coding with a known transform, and we reconstruct via the nonlinear procedure defined here, the number of measurements n can be dramatically smaller than the size m. Thus, certain natural classes of images with m pixels need only n=O(m1/4log5/2(m)) nonadaptive nonpixel samples for faithful recovery, as opposed to the usual m pixel samples. More specifically, suppose x has a sparse representation in some orthonormal basis (e.g., wavelet, Fourier) or tight frame (e.g., curvelet, Gabor)-so the coefficients belong to an lscrp ball for 0

18,609 citations

Book
01 Jan 1998
TL;DR: An introduction to a Transient World and an Approximation Tour of Wavelet Packet and Local Cosine Bases.
Abstract: Introduction to a Transient World. Fourier Kingdom. Discrete Revolution. Time Meets Frequency. Frames. Wavelet Zoom. Wavelet Bases. Wavelet Packet and Local Cosine Bases. An Approximation Tour. Estimations are Approximations. Transform Coding. Appendix A: Mathematical Complements. Appendix B: Software Toolboxes.

17,693 citations


"Compressive Sensing [Lecture Notes]..." refers background in this paper

  • ...IEEE SIGNAL PROCESSING MAGAZINE [118] JULY 2007 [lecture NOTES] 1053-5888/07/$25.00©2007IEEE Richard G. Baraniuk...

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors considered the model problem of reconstructing an object from incomplete frequency samples and showed that with probability at least 1-O(N/sup -M/), f can be reconstructed exactly as the solution to the lscr/sub 1/ minimization problem.
Abstract: This paper considers the model problem of reconstructing an object from incomplete frequency samples. Consider a discrete-time signal f/spl isin/C/sup N/ and a randomly chosen set of frequencies /spl Omega/. Is it possible to reconstruct f from the partial knowledge of its Fourier coefficients on the set /spl Omega/? A typical result of this paper is as follows. Suppose that f is a superposition of |T| spikes f(t)=/spl sigma//sub /spl tau//spl isin/T/f(/spl tau/)/spl delta/(t-/spl tau/) obeying |T|/spl les/C/sub M//spl middot/(log N)/sup -1/ /spl middot/ |/spl Omega/| for some constant C/sub M/>0. We do not know the locations of the spikes nor their amplitudes. Then with probability at least 1-O(N/sup -M/), f can be reconstructed exactly as the solution to the /spl lscr//sub 1/ minimization problem. In short, exact recovery may be obtained by solving a convex optimization problem. We give numerical values for C/sub M/ which depend on the desired probability of success. Our result may be interpreted as a novel kind of nonlinear sampling theorem. In effect, it says that any signal made out of |T| spikes may be recovered by convex programming from almost every set of frequencies of size O(|T|/spl middot/logN). Moreover, this is nearly optimal in the sense that any method succeeding with probability 1-O(N/sup -M/) would in general require a number of frequency samples at least proportional to |T|/spl middot/logN. The methodology extends to a variety of other situations and higher dimensions. For example, we show how one can reconstruct a piecewise constant (one- or two-dimensional) object from incomplete frequency samples - provided that the number of jumps (discontinuities) obeys the condition above - by minimizing other convex functionals such as the total variation of f.

14,587 citations

Journal ArticleDOI
TL;DR: This work proves sampling theorems for classes of signals and kernels that generalize the classic "bandlimited and sinc kernel" case and shows how to sample and reconstruct periodic and finite-length streams of Diracs, nonuniform splines, and piecewise polynomials using sinc and Gaussian kernels.
Abstract: The authors consider classes of signals that have a finite number of degrees of freedom per unit of time and call this number the rate of innovation. Examples of signals with a finite rate of innovation include streams of Diracs (e.g., the Poisson process), nonuniform splines, and piecewise polynomials. Even though these signals are not bandlimited, we show that they can be sampled uniformly at (or above) the rate of innovation using an appropriate kernel and then be perfectly reconstructed. Thus, we prove sampling theorems for classes of signals and kernels that generalize the classic "bandlimited and sinc kernel" case. In particular, we show how to sample and reconstruct periodic and finite-length streams of Diracs, nonuniform splines, and piecewise polynomials using sinc and Gaussian kernels. For infinite-length signals with finite local rate of innovation, we show local sampling and reconstruction based on spline kernels. The key in all constructions is to identify the innovative part of a signal (e.g., time instants and weights of Diracs) using an annihilating or locator filter: a device well known in spectral analysis and error-correction coding. This leads to standard computational procedures for solving the sampling problem, which we show through experimental results. Applications of these new sampling results can be found in signal processing, communications systems, and biological systems.

1,206 citations

Journal ArticleDOI
TL;DR: A practical iterative algorithm for signal reconstruction is proposed, and potential applications to coding, analog-digital (A/D) conversion, and remote wireless sensing are discussed.
Abstract: Recent results show that a relatively small number of random projections of a signal can contain most of its salient information. It follows that if a signal is compressible in some orthonormal basis, then a very accurate reconstruction can be obtained from random projections. This "compressive sampling" approach is extended here to show that signals can be accurately recovered from random projections contaminated with noise. A practical iterative algorithm for signal reconstruction is proposed, and potential applications to coding, analog-digital (A/D) conversion, and remote wireless sensing are discussed

672 citations