scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Computational analysis of microarray data

01 Jun 2001-Nature Reviews Genetics (Nature Publishing Group)-Vol. 2, Iss: 6, pp 418-427
TL;DR: The management and analysis of the millions of data points that result from microarray experiments has received less attention as discussed by the authors, but the methods that are used to analyse the data can have a profound influence on the interpretation of the results.
Abstract: Microarray experiments are providing unprecedented quantities of genome-wide data on gene-expression patterns. Although this technique has been enthusiastically developed and applied in many biological contexts, the management and analysis of the millions of data points that result from these experiments has received less attention. Sophisticated computational tools are available, but the methods that are used to analyse the data can have a profound influence on the interpretation of the results. A basic understanding of these computational tools is therefore required for optimal experimental design and meaningful data analysis.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The normalization strategy presented here is a prerequisite for accurate RT-PCR expression profiling, which opens up the possibility of studying the biological relevance of small expression differences.
Abstract: Gene-expression analysis is increasingly important in biological research, with real-time reverse transcription PCR (RT-PCR) becoming the method of choice for high-throughput and accurate expression profiling of selected genes. Given the increased sensitivity, reproducibility and large dynamic range of this methodology, the requirements for a proper internal control gene for normalization have become increasingly stringent. Although housekeeping gene expression has been reported to vary considerably, no systematic survey has properly determined the errors related to the common practice of using only one control gene, nor presented an adequate way of working around this problem. We outline a robust and innovative strategy to identify the most stably expressed control genes in a given set of tissues, and to determine the minimum number of genes required to calculate a reliable normalization factor. We have evaluated ten housekeeping genes from different abundance and functional classes in various human tissues, and demonstrated that the conventional use of a single gene for normalization leads to relatively large errors in a significant proportion of samples tested. The geometric mean of multiple carefully selected housekeeping genes was validated as an accurate normalization factor by analyzing publicly available microarray data. The normalization strategy presented here is a prerequisite for accurate RT-PCR expression profiling, which, among other things, opens up the possibility of studying the biological relevance of small expression differences.

18,261 citations

Journal ArticleDOI
TL;DR: DAMID is a web-accessible program that integrates functional genomic annotations with intuitive graphical summaries that assists in the interpretation of genome-scale datasets by facilitating the transition from data collection to biological meaning.
Abstract: The distributed nature of biological knowledge poses a major challenge to the interpretation of genome-scale datasets, including those derived from microarray and proteomic studies. This report describes DAVID, a web-accessible program that integrates functional genomic annotations with intuitive graphical summaries. Lists of gene or protein identifiers are rapidly annotated and summarized according to shared categorical data for Gene Ontology, protein domain, and biochemical pathway membership. DAVID assists in the interpretation of genome-scale datasets by facilitating the transition from data collection to biological meaning.

8,849 citations

Journal ArticleDOI
TL;DR: The ultimate goal of this work is to establish a standard for recording and reporting microarray-based gene expression data, which will in turn facilitate the establishment of databases and public repositories and enable the development of data analysis tools.
Abstract: Microarray analysis has become a widely used tool for the generation of gene expression data on a genomic scale. Although many significant results have been derived from microarray studies, one limitation has been the lack of standards for presenting and exchanging such data. Here we present a proposal, the Minimum Information About a Microarray Experiment (MIAME), that describes the minimum information required to ensure that microarray data can be easily interpreted and that results derived from its analysis can be independently verified. The ultimate goal of this work is to establish a standard for recording and reporting microarray-based gene expression data, which will in turn facilitate the establishment of databases and public repositories and enable the development of data analysis tools. With respect to MIAME, we concentrate on defining the content and structure of the necessary information rather than the technical format for capturing it.

4,030 citations

Journal ArticleDOI
TL;DR: New molecular technologies, such as DNA microarrays, support the idea that metastatic capacity might be an inherent feature of breast tumours and have important implications for prognosis predicition and the understanding of metastasis.
Abstract: Breast cancer starts as a local disease, but it can metastasize to the lymph nodes and distant organs. At primary diagnosis, prognostic markers are used to assess whether the transition to systemic disease is likely to have occurred. The prevailing model of metastasis reflects this view--it suggests that metastatic capacity is a late, acquired event in tumorigenesis. Others have proposed the idea that breast cancer is intrinsically a systemic disease. New molecular technologies, such as DNA microarrays, support the idea that metastatic capacity might be an inherent feature of breast tumours. These data have important implications for prognosis prediction and our understanding of metastasis.

2,113 citations

Journal ArticleDOI
15 Nov 2010-PLOS ONE
TL;DR: This work developed “Enrichment Map”, a network-based visualization method for gene-set enrichment results that is implemented as a freely available and user friendly plug-in for the Cytoscape network visualization software and is a significant advance in the interpretation of enrichment analysis.
Abstract: Background: Gene-set enrichment analysis is a useful technique to help functionally characterize large gene lists, such as the results of gene expression experiments. This technique finds functionally coherent gene-sets, such as pathways, that are statistically over-represented in a given gene list. Ideally, the number of resulting sets is smaller than the number of genes in the list, thus simplifying interpretation. However, the increasing number and redundancy of gene-sets used by many current enrichment analysis software works against this ideal. Principal Findings: To overcome gene-set redundancy and help in the interpretation of large gene lists, we developed ‘‘Enrichment Map’’, a network-based visualization method for gene-set enrichment results. Gene-sets are organized in a network, where each set is a node and edges represent gene overlap between sets. Automated network layout groups related gene-sets into network clusters, enabling the user to quickly identify the major enriched functional themes and more easily interpret the enrichment results. Conclusions: Enrichment Map is a significant advance in the interpretation of enrichment analysis. Any research project that generates a list of genes can take advantage of this visualization framework. Enrichment Map is implemented as a freely available and user friendly plug-in for the Cytoscape network visualization software (http://baderlab.org/Software/ EnrichmentMap/).

1,844 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, a procedure for forming hierarchical groups of mutually exclusive subsets, each of which has members that are maximally similar with respect to specified characteristics, is suggested for use in large-scale (n > 100) studies when a precise optimal solution for a specified number of groups is not practical.
Abstract: A procedure for forming hierarchical groups of mutually exclusive subsets, each of which has members that are maximally similar with respect to specified characteristics, is suggested for use in large-scale (n > 100) studies when a precise optimal solution for a specified number of groups is not practical. Given n sets, this procedure permits their reduction to n − 1 mutually exclusive sets by considering the union of all possible n(n − 1)/2 pairs and selecting a union having a maximal value for the functional relation, or objective function, that reflects the criterion chosen by the investigator. By repeating this process until only one group remains, the complete hierarchical structure and a quantitative estimate of the loss associated with each stage in the grouping can be obtained. A general flowchart helpful in computer programming and a numerical example are included.

17,405 citations

Journal ArticleDOI
TL;DR: A system of cluster analysis for genome-wide expression data from DNA microarray hybridization is described that uses standard statistical algorithms to arrange genes according to similarity in pattern of gene expression, finding in the budding yeast Saccharomyces cerevisiae that clustering gene expression data groups together efficiently genes of known similar function.
Abstract: A system of cluster analysis for genome-wide expression data from DNA microarray hybridization is de- scribed that uses standard statistical algorithms to arrange genes according to similarity in pattern of gene expression. The output is displayed graphically, conveying the clustering and the underlying expression data simultaneously in a form intuitive for biologists. We have found in the budding yeast Saccharomyces cerevisiae that clustering gene expression data groups together efficiently genes of known similar function, and we find a similar tendency in human data. Thus patterns seen in genome-wide expression experiments can be inter- preted as indications of the status of cellular processes. Also, coexpression of genes of known function with poorly charac- terized or novel genes may provide a simple means of gaining leads to the functions of many genes for which information is not available currently.

16,371 citations

Book
01 Jan 1995
TL;DR: The Self-Organising Map (SOM) algorithm was introduced by the author in 1981 as mentioned in this paper, and many applications form one of the major approaches to the contemporary artificial neural networks field, and new technologies have already been based on it.
Abstract: The Self-Organising Map (SOM) algorithm was introduced by the author in 1981. Its theory and many applications form one of the major approaches to the contemporary artificial neural networks field, and new technologies have already been based on it. The most important practical applications are in exploratory data analysis, pattern recognition, speech analysis, robotics, industrial and medical diagnostics, instrumentation, and control, and literally hundreds of other tasks. In this monograph the mathematical preliminaries, background, basic ideas, and implications are expounded in a manner which is accessible without prior expert knowledge.

12,920 citations

Journal ArticleDOI
15 Oct 1999-Science
TL;DR: A generic approach to cancer classification based on gene expression monitoring by DNA microarrays is described and applied to human acute leukemias as a test case and suggests a general strategy for discovering and predicting cancer classes for other types of cancer, independent of previous biological knowledge.
Abstract: Although cancer classification has improved over the past 30 years, there has been no general approach for identifying new cancer classes (class discovery) or for assigning tumors to known classes (class prediction). Here, a generic approach to cancer classification based on gene expression monitoring by DNA microarrays is described and applied to human acute leukemias as a test case. A class discovery procedure automatically discovered the distinction between acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) without previous knowledge of these classes. An automatically derived class predictor was able to determine the class of new leukemia cases. The results demonstrate the feasibility of cancer classification based solely on gene expression monitoring and suggest a general strategy for discovering and predicting cancer classes for other types of cancer, independent of previous biological knowledge.

12,530 citations

Journal ArticleDOI
20 Oct 1995-Science
TL;DR: A high-capacity system was developed to monitor the expression of many genes in parallel by means of simultaneous, two-color fluorescence hybridization, which enabled detection of rare transcripts in probe mixtures derived from 2 micrograms of total cellular messenger RNA.
Abstract: A high-capacity system was developed to monitor the expression of many genes in parallel. Microarrays prepared by high-speed robotic printing of complementary DNAs on glass were used for quantitative expression measurements of the corresponding genes. Because of the small format and high density of the arrays, hybridization volumes of 2 microliters could be used that enabled detection of rare transcripts in probe mixtures derived from 2 micrograms of total cellular messenger RNA. Differential expression measurements of 45 Arabidopsis genes were made by means of simultaneous, two-color fluorescence hybridization.

10,287 citations