scispace - formally typeset
Open AccessJournal ArticleDOI

Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas

Reads0
Chats0
TLDR
An integrated approach to improved plasmonic therapy composed of multimodal nanomaterial optimization and computational irradiation protocol development is described and a single i.v. injection of PEG-NRs enabled destruction of all irradiated human xenograft tumors in mice.
Abstract
Plasmonic nanomaterials have the opportunity to considerably improve the specificity of cancer ablation by i.v. homing to tumors and acting as antennas for accepting externally applied energy. Here, we describe an integrated approach to improved plasmonic therapy composed of multimodal nanomaterial optimization and computational irradiation protocol development. We synthesized polyethylene glycol (PEG)-protected gold nanorods (NR) that exhibit superior spectral bandwidth, photothermal heat generation per gram of gold, and circulation half-life in vivo (t1/2, ~17 hours) compared with the prototypical tunable plasmonic particles, gold nanoshells, as well as ~2-fold higher X-ray absorption than a clinical iodine contrast agent. After intratumoral or i.v. administration, we fuse PEG-NR biodistribution data derived via noninvasive X-ray computed tomography or ex vivo spectrometry, respectively, with four-dimensional computational heat transport modeling to predict photothermal heating during irradiation. In computationally driven pilot therapeutic studies, we show that a single i.v. injection of PEG-NRs enabled destruction of all irradiated human xenograft tumors in mice. These studies highlight the potential of integrating computational therapy design with nanotherapeutic development for ultraselective tumor ablation.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Analysis of nanoparticle delivery to tumours

TL;DR: This Perspective explores and explains the fundamental dogma of nanoparticle delivery to tumours and answers two central questions: ‘ how many nanoparticles accumulate in a tumour?’ and ‘how does this number affect the clinical translation of nanomedicines?'
Journal ArticleDOI

The golden age: gold nanoparticles for biomedicine

TL;DR: It is argued that gold nanotechnology-enabled biomedicine is not simply an act of 'gilding the (nanomedicinal) lily', but that a new 'Golden Age' of biomedical nanotechnology is truly upon us.
Journal ArticleDOI

PEGylation as a strategy for improving nanoparticle-based drug and gene delivery

TL;DR: The history of the development of PEGylated nanoparticle formulations for systemic administration is described, including how factors such as PEG molecular weight, PEG surface density, nanoparticle core properties, and repeated administration impact circulation time.
Journal ArticleDOI

Graphene in Mice: Ultrahigh In Vivo Tumor Uptake and Efficient Photothermal Therapy

TL;DR: This work is the first success of using carbon nanomaterials for efficient in vivo photothermal therapy by intravenous administration and suggests the great promise of graphene in biomedical applications, such as cancer treatment.
References
More filters
Journal ArticleDOI

Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods

TL;DR: It is found that, after exposure to continuous red laser at 800 nm, malignant cells require about half the laser energy to be photothermally destroyed than the nonmalignant cells, so both efficient cancer cell diagnostics and selective photothermal therapy are realized at the same time.
Journal ArticleDOI

Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles

TL;DR: A highly selective, colorimetric polynucleotide detection method based on mercaptoalkyloligonucleotide-modified gold nanoparticle probes is reported, which can detect about 10 femtomoles of an oligonucleotide.
Journal ArticleDOI

Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine

TL;DR: While nanorods with a higher aspect ratio along with a smaller effective radius are the best photoabsorbing nanoparticles, the highest scattering contrast for imaging applications is obtained from nanorod of high aspect ratio with a larger effective radius.
Journal ArticleDOI

Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance

TL;DR: In vivo studies under magnetic resonance guidance revealed that exposure to low doses of NIR light in solid tumors treated with metal nanoshells reached average maximum temperatures capable of inducing irreversible tissue damage, and found good correlation with histological findings.
Journal Article

Long-Circulating and Target-Specific Nanoparticles: Theory to Practice

TL;DR: The surface mechanisms, which affords red blood cells long-circulatory lives and the ability of specific microorganisms to evade macrophage recognition, are explored and the rational approaches in the design as well as the biological performance of such constructs are assessed.
Related Papers (5)