scispace - formally typeset
Open AccessBook

Computer Architecture: A Quantitative Approach

Reads0
Chats0
TLDR
This best-selling title, considered for over a decade to be essential reading for every serious student and practitioner of computer design, has been updated throughout to address the most important trends facing computer designers today.
Abstract
This best-selling title, considered for over a decade to be essential reading for every serious student and practitioner of computer design, has been updated throughout to address the most important trends facing computer designers today. In this edition, the authors bring their trademark method of quantitative analysis not only to high-performance desktop machine design, but also to the design of embedded and server systems. They have illustrated their principles with designs from all three of these domains, including examples from consumer electronics, multimedia and Web technologies, and high-performance computing.

read more

Citations
More filters

Quantum Computation and Quantum Information

TL;DR: This chapter discusses quantum information theory, public-key cryptography and the RSA cryptosystem, and the proof of Lieb's theorem.
Proceedings ArticleDOI

MiBench: A free, commercially representative embedded benchmark suite

TL;DR: A new version of SimpleScalar that has been adapted to the ARM instruction set is used to characterize the performance of the benchmarks using configurations similar to current and next generation embedded processors.
Proceedings ArticleDOI

The PARSEC benchmark suite: characterization and architectural implications

TL;DR: This paper presents and characterizes the Princeton Application Repository for Shared-Memory Computers (PARSEC), a benchmark suite for studies of Chip-Multiprocessors (CMPs), and shows that the benchmark suite covers a wide spectrum of working sets, locality, data sharing, synchronization and off-chip traffic.
Posted Content

In-Datacenter Performance Analysis of a Tensor Processing Unit

TL;DR: This paper evaluates a custom ASIC-called a Tensor Processing Unit (TPU)-deployed in datacenters since 2015 that accelerates the inference phase of neural networks (NN) and compares it to a server-class Intel Haswell CPU and an Nvidia K80 GPU, which are contemporaries deployed in the samedatacenters.