scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Concise Review: MSC-Derived Exosomes for Cell-Free Therapy

01 Apr 2017-Stem Cells (Wiley-Blackwell)-Vol. 35, Iss: 4, pp 851-858
TL;DR: T careful attention to detail in producing MSC exosomes may provide a new therapeutic paradigm for cell‐free MSC‐based therapies with decreased risk.
Abstract: Mesenchymal stem cell transplantation is undergoing extensive evaluation as a cellular therapy in human clinical trials. Because MSCs are easily isolated and amenable to culture expansion in vitro there is a natural desire to test MSCs in many diverse clinical indications. This is exemplified by the rapidly expanding literature base that includes many in vivo animal models. More recently, MSC-derived extracellular vesicles (EVs), which include exosomes and microvesicles (MV), are being examined for their role in MSC-based cellular therapy. These vesicles are involved in cell-to-cell communication, cell signaling, and altering cell or tissue metabolism at short or long distances in the body. The exosomes and MVs can influence tissue responses to injury, infection, and disease. MSC-derived exosomes have a content that includes cytokines and growth factors, signaling lipids, mRNAs, and regulatory miRNAs. To the extent that MSC exosomes can be used for cell-free regenerative medicine, much will depend on the quality, reproducibility, and potency of their production, in the same manner that these parameters dictate the development of cell-based MSC therapies. However, the MSC exosome's contents are not static, but rather a product of the MSC tissue origin, its activities and the immediate intercellular neighbors of the MSCs. As such, the exosome content produced by MSCs appears to be altered when MSCs are cultured with tumor cells or in the in vivo tumor microenvironment. Therefore, careful attention to detail in producing MSC exosomes may provide a new therapeutic paradigm for cell-free MSC-based therapies with decreased risk. Stem Cells 2017;35:851-858.
Citations
More filters
Journal ArticleDOI
TL;DR: The expansive and growing field of MSC research is teaching us basic human cell biology as well as how to use this type of cell for cellular therapy in a variety of clinical settings, and while much promise is evident, careful new work is still needed.
Abstract: The terms MSC and MSCs have become the preferred acronym to describe a cell and a cell population of multipotential stem/progenitor cells commonly referred to as mesenchymal stem cells, multipotential stromal cells, mesenchymal stromal cells, and mesenchymal progenitor cells. The MSCs can differentiate to important lineages under defined conditions in vitro and in limited situations after implantation in vivo. MSCs were isolated and described about 30 years ago and now there are over 55,000 publications on MSCs readily available. Here, we have focused on human MSCs whenever possible. The MSCs have broad anti-inflammatory and immune-modulatory properties. At present, these provide the greatest focus of human MSCs in clinical testing; however, the properties of cultured MSCs in vitro suggest they can have broader applications. The medical utility of MSCs continues to be investigated in over 950 clinical trials. There has been much progress in understanding MSCs over the years, and there is a strong foundation for future scientific research and clinical applications, but also some important questions remain to be answered. Developing further methods to understand and unlock MSC potential through intracellular and intercellular signaling, biomedical engineering, delivery methods and patient selection should all provide substantial advancements in the coming years and greater clinical opportunities. The expansive and growing field of MSC research is teaching us basic human cell biology as well as how to use this type of cell for cellular therapy in a variety of clinical settings, and while much promise is evident, careful new work is still needed.

975 citations

Journal ArticleDOI
13 Nov 2017-Diabetes
TL;DR: Treatment of obese mice with ADSC-derived exosomes facilitated their metabolic homeostasis, including improved insulin sensitivity, reduced obesity, and alleviated hepatic steatosis, thus providing potential therapy for obesity and diabetes.
Abstract: Adipose-derived stem cells (ADSCs) play critical roles in controlling obesity-associated inflammation and metabolic disorders. Exosomes from ADSCs exert protective effects in several diseases, but their roles in obesity and related pathological conditions remain unclear. In this study, we showed that treatment of obese mice with ADSC-derived exosomes facilitated their metabolic homeostasis, including improved insulin sensitivity (27.8% improvement), reduced obesity, and alleviated hepatic steatosis. ADSC-derived exosomes drove alternatively activated M2 macrophage polarization, inflammation reduction, and beiging in white adipose tissue (WAT) of diet-induced obese mice. Mechanistically, exosomes from ADSCs transferred into macrophages to induce anti-inflammatory M2 phenotypes through the transactivation of arginase-1 by exosome-carried active STAT3. Moreover, M2 macrophages induced by ADSC-derived exosomes not only expressed high levels of tyrosine hydroxylase responsible for catecholamine release, but also promoted ADSC proliferation and lactate production, thereby favoring WAT beiging and homeostasis in response to high-fat challenge. These findings delineate a novel exosome-mediated mechanism for ADSC–macrophage cross talk that facilitates immune and metabolic homeostasis in WAT, thus providing potential therapy for obesity and diabetes.

385 citations


Cites background from "Concise Review: MSC-Derived Exosome..."

  • ...inflammation and the presence of cytokines in exosomes have been reported (48)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors focus on flow cytometric approaches to characterize free as well as cell bound extracellular vesicles (EVs) and address potential differences in the bioactivity of EVs derived from stem cells from different sources.
Abstract: Mesenchymal stem cells (MSC) exhibit a high self-renewal capacity, multilineage differentiation potential and immunomodulatory properties. This set of exceptional features makes them an attractive tool for research and clinical application. However, MSC are far from being a uniform cell type, which makes standardization difficult. The exact properties of human MSC (hMSC) can vary greatly depending on multiple parameters including tissue source, isolation method and medium composition. In this review we address the most important influence factors. We highlight variations in the differentiation potential of MSC from different tissue sources. Furthermore, we compare enzymatic isolation strategies with explants cultures focusing on adipose tissue and umbilical cords as two relevant examples. Additionally, we address effects of medium composition and serum supplementation on MSC expansion and differentiation. The lack of standardized methods for hMSC isolation and cultivation mandates careful evaluation of different protocols regarding efficiency and cell quality. MSC characterization based on a set of minimal criteria defined by the International Society for Cellular Therapy is a widely accepted practice, and additional testing for MSC functionality can provide valuable supplementary information. The MSC secretome has been identified as an important signaling mechanism to affect other cells. In this context, extracellular vesicles (EVs) are attracting increasing interest. The thorough characterization of MSC-derived EVs and their interaction with target cells is a crucial step toward a more complete understanding of MSC-derived EV functionality. Here, we focus on flow cytometric approaches to characterize free as well as cell bound EVs and address potential differences in the bioactivity of EVs derived from stem cells from different sources. © 2017 International Society for Advancement of Cytometry.

330 citations

Journal ArticleDOI
TL;DR: MSCIPFP-derived exosomes protect articular cartilage from damage and ameliorate gait abnormality in OA mice by maintaining cartilage homeostasis, the mechanism of which may be related to miR100-5p-regulated inhibition of mTOR-autophagy pathway.

297 citations

Journal ArticleDOI
TL;DR: This review summarizes the current knowledge regarding the management and treatment of acute and chronic wounds, with a focus on re-epithelialization, offering some insights into novel future therapies.

262 citations


Cites background from "Concise Review: MSC-Derived Exosome..."

  • ...keratinocytes, and endothelial cells, have revealed promising outcomes in wound healing studies and are currently under intensive research [291,310,311]....

    [...]

References
More filters
Journal ArticleDOI
04 Apr 1997-Science
TL;DR: Marrow stromal cells present an intriguing model for examining the differentiation of stem cells and have several characteristics that make them potentially useful for cell and gene therapy.
Abstract: Marrow stromal cells can be isolated from other cells in marrow by their tendency to adhere to tissue culture plastic The cells have many of the characteristics of stem cells for tissues that can roughly be defined as mesenchymal, because they can be differentiated in culture into osteoblasts, chondrocytes, adipocytes, and even myoblasts Therefore, marrow stromal cells present an intriguing model for examining the differentiation of stem cells Also, they have several characteristics that make them potentially useful for cell and gene therapy

4,740 citations

Journal ArticleDOI
15 Feb 2005-Blood
TL;DR: Insight is offered into the interactions between allogeneic MSCs and immune cells and mechanisms likely involved with the in vivo MSC-mediated induction of tolerance that could be therapeutic for reduction of GVHD, rejection, and modulation of inflammation.

4,264 citations

Journal ArticleDOI
TL;DR: Several studies which tested the use of MSCs in models of infarct (injured heart), stroke (brain), or meniscus regeneration models are reviewed within the context of M SC‐mediated trophic effects in tissue repair.
Abstract: Adult marrow-derived Mesenchymal Stem Cells (MSCs) are capable of dividing and their progeny are further capable of differentiating into one of several mesenchymal phenotypes such as osteoblasts, chondrocytes, myocytes, marrow stromal cells, tendon-ligament fibroblasts, and adipocytes. In addition, these MSCs secrete a variety of cytokines and growth factors that have both paracrine and autocrine activities. These secreted bioactive factors suppress the local immune system, inhibit fibrosis (scar formation) and apoptosis, enhance angiogenesis, and stimulate mitosis and differentiation of tissue-intrinsic reparative or stem cells. These effects, which are referred to as trophic effects, are distinct from the direct differentiation of MSCs into repair tissue. Several studies which tested the use of MSCs in models of infarct (injured heart), stroke (brain), or meniscus regeneration models are reviewed within the context of MSC-mediated trophic effects in tissue repair.

2,743 citations

Journal ArticleDOI
10 Mar 2016-Cell
TL;DR: This Review focuses on the context of tumor cells and their microenvironment, but similar results and challenges apply to all patho/physiological systems in which EV-mediated communication is proposed to take place.

2,293 citations

Journal ArticleDOI
TL;DR: Baboon MSCs have been observed to alter lymphocyte reactivity to allogeneic target cells and tissues, which may prove useful in future applications of tissue regeneration and stem cell engineering.

2,273 citations