scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Conductance quantization and shot noise of a double-layer quantum point contact

TL;DR: In this paper, the conductance quantization and shot noise below the first conductance plateau were measured in a quantum point contact fabricated in a GaAs/AlGaAs tunnel-coupled double quantum well.
Abstract: The conductance quantization and shot noise below the first conductance plateau ${G}_{0}=2{e}^{2}/h$ are measured in a quantum point contact fabricated in a GaAs/AlGaAs tunnel-coupled double quantum well. From the conductance measurement, we observe a clear quantized conductance plateau at $0.5{G}_{0}$ and a small minimum in the transconductance at $0.7{G}_{0}$. Spectroscopic transconductance measurement reveals three maxima inside the first diamond, thus suggesting three minima in the dispersion relation for electric subbands. Shot noise measurement shows that the Fano factor behavior is consistent with this observation. We propose a model that relates these features to a wave-number directional split subband due to a strong Rashba spin-orbit interaction that is induced by the center barrier potential gradient of the double-layer sample.
Citations
More filters
Journal Article
TL;DR: Experimental evidence is presented that a quantum point contact -- a short wire -- made from a semiconductor with high intrinsic spin-orbit coupling can generate a completely spin-polarized current when its lateral confinement is made highly asymmetric.
Abstract: The controlled creation, manipulation and detection of spin-polarized currents by purely electrical means remains a central challenge of spintronics. Efforts to meet this challenge by exploiting the coupling of the electron orbital motion to its spin, in particular Rashba spin-orbit coupling, have so far been unsuccessful. Recently, it has been shown theoretically that the confining potential of a small current-carrying wire with high intrinsic spin-orbit coupling leads to the accumulation of opposite spins at opposite edges of the wire, though not to a spin-polarized current. Here, we present experimental evidence that a quantum point contact -- a short wire -- made from a semiconductor with high intrinsic spin-orbit coupling can generate a completely spin-polarized current when its lateral confinement is made highly asymmetric. By avoiding the use of ferromagnetic contacts or external magnetic fields, such quantum point contacts may make feasible the development of a variety of semiconductor spintronic devices.

127 citations

Journal ArticleDOI
TL;DR: In this paper, the shape of the confinement potential of the GaAs/AlGaAs heterostructures of two-dimensional (2D) point contacts with a strongly suppressed disorder potential was analyzed.
Abstract: Quantum point contacts are fundamental building blocks for mesoscopic transport experiments and play an important role in recent interference- and fractional quantum Hall experiments. However, it is not clear how electron-electron interactions and the random disorder potential influence the confinement potential and give rise to phenomena like the mysterious 0.7 anomaly. Novel growth techniques of GaAs/AlGaAs heterostructures for high-mobility two-dimensional electron gases enable us to investigate quantum point contacts with a strongly suppressed disorder potential. These clean quantum point contacts indeed show transport features that are obscured by disorder in standard samples. From this transport data, we are able to extract the parameters of the confinement potential which describe its shape in longitudinal and transverse direction. Knowing the shape (and hence the slope) of the confinement potential might be crucial to predict which interaction-induced states can form in quantum point contacts.

42 citations

Journal ArticleDOI
TL;DR: In this article, the quantum transport in an n-type split-gate structure controlled by either an AC finger gate or an AC top gate is modeled and the quantum conductance is numerically computed for three different sideband approximations.

3 citations

Journal Article
TL;DR: In this paper, the effective field theory that properly describes ferromagnetic transition in one-dimensional itinerant electron systems was derived using bosonization, which is shown to have dynamical exponent z = 2 at tree leve and upper critical dimension d_c=2.
Abstract: We use bosonization to derive the effective field theory that properly describes ferromagnetic transition in one-dimensional itinerant electron systems. The resultant theory is shown to have dynamical exponent z=2 at tree leve and upper critical dimension d_c=2. Thus one dimension is below the upper critical dimension of the theory, and the critical behavior of the transition is controlled by an interacting fixed point, which we study via epsilon expansion. Comparisons will be made with the Hertz-Millis theory, which describes the ferromagnetic transition in higher dimensions.

1 citations

References
More filters
Journal ArticleDOI
16 Nov 2001-Science
TL;DR: This review describes a new paradigm of electronics based on the spin degree of freedom of the electron, which has the potential advantages of nonvolatility, increased data processing speed, decreased electric power consumption, and increased integration densities compared with conventional semiconductor devices.
Abstract: This review describes a new paradigm of electronics based on the spin degree of freedom of the electron. Either adding the spin degree of freedom to conventional charge-based electronic devices or using the spin alone has the potential advantages of nonvolatility, increased data processing speed, decreased electric power consumption, and increased integration densities compared with conventional semiconductor devices. To successfully incorporate spins into existing semiconductor technology, one has to resolve technical issues such as efficient injection, transport, control and manipulation, and detection of spin polarization as well as spin-polarized currents. Recent advances in new materials engineering hold the promise of realizing spintronic devices in the near future. We review the current state of the spin-based devices, efforts in new materials fabrication, issues in spin transport, and optical spin manipulation.

9,917 citations

Journal ArticleDOI
TL;DR: In this article, an electron wave analog of the electro-optic light modulator is proposed, where magnetized contacts are used to preferentially inject and detect specific spin orientations.
Abstract: We propose an electron wave analog of the electro‐optic light modulator. The current modulation in the proposed structure arises from spin precession due to the spin‐orbit coupling in narrow‐gap semiconductors, while magnetized contacts are used to preferentially inject and detect specific spin orientations. This structure may exhibit significant current modulation despite multiple modes, elevated temperatures, or a large applied bias.

4,268 citations

Journal ArticleDOI
16 Mar 2000-Nature
TL;DR: In information processing, as in physics, the classical world view provides an incomplete approximation to an underlying quantum reality that can be harnessed to break codes, create unbreakable codes, and speed up otherwise intractable computations.
Abstract: In information processing, as in physics, our classical world view provides an incomplete approximation to an underlying quantum reality. Quantum effects like interference and entanglement play no direct role in conventional information processing, but they can--in principle now, but probably eventually in practice--be harnessed to break codes, create unbreakable codes, and speed up otherwise intractable computations.

3,080 citations

Journal ArticleDOI
TL;DR: The dependence on channel number N of the contributions to the conductance of a small ring, periodic in the Aharonov-Bohm flux through it is obtained, and terms whose period is h/e as well as those with period h/2e vary with N as 1/N.
Abstract: The conductance of a sample scattering elastically and coupled to leads with many channels is derived. We assume that all the incident channels on one side of the sample are fed from the same chemical potential. The transmitted and reflected streams are determined by the incident streams through the multichannel scattering properties of the sample. We do not assume that the channels equilibrate with each other. Our result differs from those given earlier by other authors, except for that of Azbel [J. Phys. C 14, L225 (1981)], which is confirmed. We point out that a similar result is obtained for the conductance in a single channel at a temperature above zero. As an application, we obtain the dependence on channel number N of the contributions to the conductance of a small ring, periodic in the Aharonov-Bohm flux through it. Terms whose period is h/e as well as those with period h/2e vary with N as 1/N.

2,513 citations

Journal ArticleDOI
TL;DR: The first expenmental study of the resistance of ballistic pomt contacts m the 2DEG of high-mobihty GaAs-AlGaAs heterostructures is reported.
Abstract: As a result of the high mobihty attamable in the twodimensional electron gas (2DEG) in GaAs-AlGaAs heterostructures it is now becoming feasible to study ballistic transport in small devices '"6 In metals ideal tools for such studies are constnctions havng a width W and length L much smaller than the mean free path le These are known as Sharvin pomt contacts 7 Because of the ballistic transport through these constnctions, the resistance is determmed by the pomt-contact geometry only Point contacts have been used extensively for the study of elastic and melastic electron scattermg With use of biased pomt contacts, electrons can be mjected mto metals at energies above the Fermi level This allows the study of the energy dependence of the scattermg mechamsms 8 With the use of a geometry containmg two pomt contacts, with Separation smaller than le, electrons mjected by a pomt contact can be focused mto the other contact, by the application of a magnetic field This technique (transverse electron focusmg) has been applied to the detailed study of Fermi surfaces 9 In this Letter we report the first expenmental study of the resistance of ballistic pomt contacts m the 2DEG of high-mobihty GaAs-AlGaAs heterostructures The smgle-pomt contacts discussed m this paper are part of a double-pomt-contact device The results of transverse electron focusmg m these devices will be published elsewhere '° The pomt contacts are dehned by electrostatic depletion of the 2DEG underneath a gate This method, which has been used by several authors for the study of l D conduction,'1 offers the possibility to control the width of the pomt contact by the gate voltage Control of the width is not feasible in metal pomt contacts

2,508 citations