scispace - formally typeset
Journal ArticleDOI

Conduction in glasses containing transition metal ions

Nevill Mott
- 01 Dec 1968 - 
- Vol. 1, Iss: 1, pp 1-17
Reads0
Chats0
TLDR
In this article, a discussion of conduction in glasses containing transition metal ions is presented, and the Miller-Abrahams term and polaron hopping term tend to zero, giving a decreasing slope of the ln p versus 1/T curve.
Abstract
In a discussion of conduction in glasses containing transition metal ions, the following points are stressed: 1. (a) The process is similar to “impurity conduction” in doped and compensated semi-conductors. 2. (b) There should be two terms in the activation energy, the Miller-Abrahams term and a polaron hopping term. 3. (c) Both terms should tend to zero, giving a decreasing slope of the ln p versus 1/T curve, as T → 0. 4. (d) The Heikes-Ure formula for the thermopower is discussed and a tentative explanation given of the difference between vanadium- and iron-containing glasses.

read more

Citations
More filters
Journal ArticleDOI

Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors

TL;DR: In this article, the experimental evidence concerning the density of states in amorphous semiconductors and the ranges of energy in which states are localized is reviewed; this includes d.c and a.c. conductivity, drift mobility and optical absorption.
Journal ArticleDOI

Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems

Andrea C. Ferrari, +68 more
- 04 Mar 2015 - 
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Journal ArticleDOI

Sol-gel chemistry of transition metal oxides

TL;DR: In this paper, the preparation of a colloidal colloidal by un procede sol gel is described, and a procedure for determination des proprietes electriques et electrochimiques is described.
Journal ArticleDOI

Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states

TL;DR: In this paper, it was shown that in the absence of coupling of the electrons to any external bath dc electrical conductivity exactly vanishes as long as the temperature T does not exceed some finite value Tc.
Journal ArticleDOI

Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond

TL;DR: In this article, the authors review recent developments in the physics of ultracold atomic and molecular gases in optical lattices and show how these systems may be employed as quantum simulators to answer some challenging open questions of condensed matter, and even high energy physics.
References
More filters
Journal ArticleDOI

Absence of Diffusion in Certain Random Lattices

TL;DR: In this article, a simple model for spin diffusion or conduction in the "impurity band" is presented, which involves transport in a lattice which is in some sense random, and in them diffusion is expected to take place via quantum jumps between localized sites.
Journal ArticleDOI

Studies of polaron motion: Part II. The “small” polaron

TL;DR: In this article, the authors considered the case in which the electronic-overlap term of the total Hamiltonian is a small perturbation, and showed that the probability of off-diagonal transitions goes up exponentially with increasing temperature.
Journal ArticleDOI

Impurity Conduction at Low Concentrations

TL;DR: In this paper, the conductivity of an n-type semiconductor has been calculated in the region of low-temperature $T$ and low impurity concentration ${n}_{D}$.
Journal ArticleDOI

Conduction in polar crystals. I. Electrolytic conduction in solid salts

TL;DR: Etude theorique de la conductivite des solides (NaCl, KCl, RbCl, LiF, NaF, NN, NaBr, NaI, KI, I, KB, KK, KBr, RBCl, NBr, NB, NCl, NaB, NaC, NC, NaD, NaE, NE, NaG, NG, NaX, NX, NaV, NaZ, NaY, NaO, NaW, NaN, N